117 lines
3.7 KiB
Python
117 lines
3.7 KiB
Python
import os
|
|
from typing import List
|
|
from pydantic import validator
|
|
from pydantic_settings import BaseSettings
|
|
|
|
|
|
class Settings(BaseSettings):
|
|
"""
|
|
Configuración básica de la aplicación
|
|
"""
|
|
|
|
# Configuración básica de la aplicación
|
|
APP_NAME: str = "File Manager API"
|
|
DEBUG: bool = False
|
|
HOST: str = "0.0.0.0"
|
|
PORT: int = 8000
|
|
|
|
# Configuración de CORS para React frontend
|
|
ALLOWED_ORIGINS: List[str] = [
|
|
"http://localhost:3000", # React dev server
|
|
"http://localhost:5173",
|
|
"http://frontend:3000", # Docker container name
|
|
]
|
|
|
|
# Azure Blob Storage configuración
|
|
AZURE_STORAGE_CONNECTION_STRING: str
|
|
AZURE_STORAGE_ACCOUNT_NAME: str = ""
|
|
AZURE_CONTAINER_NAME: str = "files"
|
|
|
|
# Qdrant Vector DB configuración
|
|
QDRANT_URL: str
|
|
QDRANT_API_KEY: str
|
|
VECTOR_DB_TYPE: str = "qdrant" # Para futuro: soportar otros tipos
|
|
|
|
# Azure OpenAI configuración
|
|
AZURE_OPENAI_ENDPOINT: str
|
|
AZURE_OPENAI_API_KEY: str
|
|
AZURE_OPENAI_API_VERSION: str = "2024-02-01"
|
|
AZURE_OPENAI_EMBEDDING_MODEL: str = "text-embedding-3-large"
|
|
AZURE_OPENAI_EMBEDDING_DEPLOYMENT: str = "text-embedding-3-large"
|
|
|
|
# Google Cloud / Vertex AI configuración
|
|
GOOGLE_APPLICATION_CREDENTIALS: str
|
|
GOOGLE_CLOUD_PROJECT: str
|
|
GOOGLE_CLOUD_LOCATION: str = "us-central1"
|
|
GEMINI_MODEL: str = "gemini-2.0-flash"
|
|
|
|
# LandingAI configuración
|
|
LANDINGAI_API_KEY: str
|
|
LANDINGAI_ENVIRONMENT: str = "production" # "production" o "eu"
|
|
|
|
# Schemas storage
|
|
SCHEMAS_DIR: str = "./data/schemas"
|
|
|
|
@validator("AZURE_STORAGE_CONNECTION_STRING")
|
|
def validate_azure_connection_string(cls, v):
|
|
"""Validar que el connection string de Azure esté presente"""
|
|
if not v:
|
|
raise ValueError("AZURE_STORAGE_CONNECTION_STRING es requerido")
|
|
return v
|
|
|
|
@validator("QDRANT_URL")
|
|
def validate_qdrant_url(cls, v):
|
|
"""Validar que la URL de Qdrant esté presente"""
|
|
if not v:
|
|
raise ValueError("QDRANT_URL es requerido")
|
|
return v
|
|
|
|
@validator("QDRANT_API_KEY")
|
|
def validate_qdrant_api_key(cls, v):
|
|
"""Validar que la API key de Qdrant esté presente"""
|
|
if not v:
|
|
raise ValueError("QDRANT_API_KEY es requerido")
|
|
return v
|
|
|
|
@validator("AZURE_OPENAI_ENDPOINT")
|
|
def validate_azure_openai_endpoint(cls, v):
|
|
"""Validar que el endpoint de Azure OpenAI esté presente"""
|
|
if not v:
|
|
raise ValueError("AZURE_OPENAI_ENDPOINT es requerido")
|
|
return v
|
|
|
|
@validator("AZURE_OPENAI_API_KEY")
|
|
def validate_azure_openai_api_key(cls, v):
|
|
"""Validar que la API key de Azure OpenAI esté presente"""
|
|
if not v:
|
|
raise ValueError("AZURE_OPENAI_API_KEY es requerido")
|
|
return v
|
|
|
|
@validator("GOOGLE_APPLICATION_CREDENTIALS")
|
|
def validate_google_credentials(cls, v):
|
|
"""Validar que el path de credenciales de Google esté presente"""
|
|
if not v:
|
|
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS es requerido")
|
|
return v
|
|
|
|
@validator("GOOGLE_CLOUD_PROJECT")
|
|
def validate_google_project(cls, v):
|
|
"""Validar que el proyecto de Google Cloud esté presente"""
|
|
if not v:
|
|
raise ValueError("GOOGLE_CLOUD_PROJECT es requerido")
|
|
return v
|
|
|
|
@validator("LANDINGAI_API_KEY")
|
|
def validate_landingai_api_key(cls, v):
|
|
"""Validar que la API key de LandingAI esté presente"""
|
|
if not v:
|
|
raise ValueError("LANDINGAI_API_KEY es requerido")
|
|
return v
|
|
|
|
class Config:
|
|
env_file = ".env"
|
|
case_sensitive = True
|
|
|
|
|
|
# Instancia global de configuración
|
|
settings = Settings() |