from qdrant_client import QdrantClient from fastembed import TextEmbedding from qdrant_client.models import Distance, VectorParams, PointStruct from qdrant_mcp.config import Settings settings = Settings() embedding_model = TextEmbedding() client = QdrantClient(url=settings.url, api_key=settings.api_key) documents: list[str] = [ "Rick es el mas guapo", "Los pulpos tienen tres corazones y sangre azul", "Las cucarachas pueden vivir hasta una semana sin cabeza", "Los koalas tienen huellas dactilares casi idénticas a las humanas", "La miel nunca se echa a perder, incluso después de miles de años" ] embeddings = list(embedding_model.embed(documents)) size = len(embeddings[0]) _ = client.recreate_collection( collection_name="dummy_collection", vectors_config=VectorParams( distance=Distance.COSINE, size=size ) ) for idx, (emb, document) in enumerate(zip(embeddings, documents)): _ = client.upsert( collection_name="dummy_collection", points=[ PointStruct( id=idx, vector=emb, payload={ "text": document } ) ] )