Se agrego la implementacion de Embedding

This commit is contained in:
Sebastian
2025-09-30 23:06:33 +00:00
parent 611c2c4b81
commit a3d972ddb9
5 changed files with 185 additions and 26 deletions

View File

@@ -1,12 +1,10 @@
import json
import pytest
from fastmcp import Client
from fastembed import TextEmbedding
from searchbox.mcp_server.server import mcp
embedding_model = TextEmbedding()
@pytest.fixture
async def mcp_client():
@@ -15,19 +13,18 @@ async def mcp_client():
async def test_mcp_qdrant_backend(mcp_client):
embedding = list(embedding_model.embed("Quien es el mas guapo"))[0].tolist()
"""Test MCP server with automatic Azure embedding."""
result = await mcp_client.call_tool(
name="get_information",
arguments={
"query": "dummy value",
"collection": "dummy_collection",
"embedding": embedding,
"query": "Quien es el mas guapo",
"collection": "azure_collection",
},
)
content = json.loads(result.content[0].text)[0]
assert content["chunk_id"] == "0"
assert content["score"] >= 0.7
assert content["payload"] == {"text": "Rick es el mas guapo"}
assert content["score"] >= 0.65
assert content["payload"]["page_content"] == "Rick es el mas guapo"
assert content["payload"]["filename"] == "test.txt"
assert content["payload"]["page"] == 1