Add engine abstraction

This commit is contained in:
2025-09-26 14:38:44 +00:00
parent de9826a4b6
commit 0656ed93f1
6 changed files with 168 additions and 42 deletions

View File

@@ -0,0 +1,79 @@
from collections.abc import Sequence
from typing import final, override
from qdrant_client import AsyncQdrantClient, models
from ..config import Settings
from ..models import SearchRow, Condition, Match, MatchAny, MatchExclude
from .base_engine import BaseEngine
__all__ = ["QdrantEngine"]
@final
class QdrantEngine(BaseEngine[list[models.ScoredPoint], models.Filter]):
def __init__(self) -> None:
self.settings = Settings() # type: ignore[reportCallArgs]
self.client = AsyncQdrantClient(
url=self.settings.url, api_key=self.settings.api_key
)
@override
def transform_conditions(
self, conditions: list[Condition] | None
) -> models.Filter | None:
if not conditions:
return None
filters: list[models.Condition] = []
for condition in conditions:
if isinstance(condition, Match):
filters.append(
models.FieldCondition(
key=condition.key,
match=models.MatchValue(value=condition.value),
)
)
elif isinstance(condition, MatchAny):
filters.append(
models.FieldCondition(
key=condition.key, match=models.MatchAny(any=condition.any)
)
)
elif isinstance(condition, MatchExclude):
filters.append(
models.FieldCondition(
key=condition.key,
match=models.MatchExcept(**{"except": condition.exclude}),
)
)
return models.Filter(must=filters)
@override
def transform_response(self, response: list[models.ScoredPoint]) -> list[SearchRow]:
return [
SearchRow(chunk_id=str(point.id), score=point.score, payload=point.payload)
for point in response
if point.payload is not None
]
@override
async def run_similarity_query(
self,
embedding: Sequence[float] | models.NamedVector,
collection: str,
limit: int = 10,
conditions: models.Filter | None = None,
threshold: float | None = None,
) -> list[models.ScoredPoint]:
return await self.client.search(
collection_name=collection,
query_vector=embedding,
query_filter=conditions,
limit=limit,
with_payload=True,
with_vectors=False,
score_threshold=threshold,
)