""" Servicio de embeddings usando Azure OpenAI. Genera embeddings para chunks de texto usando text-embedding-3-large (3072 dimensiones). """ import logging from typing import List from openai import AzureOpenAI from ..core.config import settings logger = logging.getLogger(__name__) class EmbeddingService: """Servicio para generar embeddings usando Azure OpenAI""" def __init__(self): """Inicializa el cliente de Azure OpenAI""" try: self.client = AzureOpenAI( api_key=settings.AZURE_OPENAI_API_KEY, api_version=settings.AZURE_OPENAI_API_VERSION, azure_endpoint=settings.AZURE_OPENAI_ENDPOINT ) self.model = settings.AZURE_OPENAI_EMBEDDING_DEPLOYMENT self.embedding_dimension = 3072 logger.info(f"EmbeddingService inicializado con modelo {self.model}") except Exception as e: logger.error(f"Error inicializando EmbeddingService: {e}") raise async def generate_embedding(self, text: str) -> List[float]: """ Genera un embedding para un texto individual. Args: text: Texto para generar embedding Returns: Vector de embedding (3072 dimensiones) Raises: Exception: Si hay error al generar el embedding """ try: response = self.client.embeddings.create( input=[text], model=self.model ) embedding = response.data[0].embedding if len(embedding) != self.embedding_dimension: raise ValueError( f"Dimensión incorrecta: esperada {self.embedding_dimension}, " f"obtenida {len(embedding)}" ) return embedding except Exception as e: logger.error(f"Error generando embedding: {e}") raise async def generate_embeddings_batch( self, texts: List[str], batch_size: int = 100 ) -> List[List[float]]: """ Genera embeddings para múltiples textos en lotes. Args: texts: Lista de textos para generar embeddings batch_size: Tamaño del lote para procesamiento (default: 100) Returns: Lista de vectores de embeddings Raises: Exception: Si hay error al generar los embeddings """ try: embeddings = [] for i in range(0, len(texts), batch_size): batch = texts[i:i + batch_size] logger.info(f"Procesando lote {i//batch_size + 1}/{(len(texts)-1)//batch_size + 1}") response = self.client.embeddings.create( input=batch, model=self.model ) batch_embeddings = [item.embedding for item in response.data] # Validar dimensiones for idx, emb in enumerate(batch_embeddings): if len(emb) != self.embedding_dimension: raise ValueError( f"Dimensión incorrecta en índice {i + idx}: " f"esperada {self.embedding_dimension}, obtenida {len(emb)}" ) embeddings.extend(batch_embeddings) logger.info(f"Generados {len(embeddings)} embeddings exitosamente") return embeddings except Exception as e: logger.error(f"Error generando embeddings en lote: {e}") raise # Instancia global singleton _embedding_service: EmbeddingService | None = None def get_embedding_service() -> EmbeddingService: """ Obtiene la instancia singleton del servicio de embeddings. Returns: Instancia de EmbeddingService """ global _embedding_service if _embedding_service is None: _embedding_service = EmbeddingService() return _embedding_service