add redis backend

This commit is contained in:
Anibal Angulo
2025-11-06 16:24:05 -06:00
parent 86e5c955c5
commit c5e0a451c0
13 changed files with 1302 additions and 650 deletions

View File

@@ -0,0 +1,150 @@
import logging
from fastapi import APIRouter, HTTPException
from pydantic import BaseModel
from ..models.dataroom import DataRoom
from ..models.vector_models import CollectionCreateRequest
from ..services.vector_service import vector_service
logger = logging.getLogger(__name__)
class DataroomCreate(BaseModel):
name: str
collection: str = ""
storage: str = ""
router = APIRouter(prefix="/dataroom", tags=["Dataroom"])
@router.get("/")
async def list_datarooms():
"""
Listar todos los temas disponibles
"""
try:
# Get all DataRoom instances
datarooms: list[DataRoom] = DataRoom.find().all()
logger.info(f"Found {len(datarooms)} datarooms in Redis")
# Convert to list of dictionaries
dataroom_list = [
{"name": room.name, "collection": room.collection, "storage": room.storage}
for room in datarooms
]
logger.info(f"Returning dataroom list: {dataroom_list}")
return {"datarooms": dataroom_list}
except Exception as e:
logger.error(f"Error listing datarooms: {e}")
raise HTTPException(
status_code=500, detail=f"Error listing datarooms: {str(e)}"
)
@router.post("/")
async def create_dataroom(dataroom: DataroomCreate):
"""
Crear un nuevo dataroom y su colección vectorial asociada
"""
try:
# Create new DataRoom instance
new_dataroom = DataRoom(
name=dataroom.name, collection=dataroom.collection, storage=dataroom.storage
)
# Save to Redis
new_dataroom.save()
# Create the vector collection for this dataroom
try:
# First check if collection already exists
collection_exists_response = await vector_service.check_collection_exists(
dataroom.name
)
if not collection_exists_response.exists:
# Only create if it doesn't exist
collection_request = CollectionCreateRequest(
collection_name=dataroom.name,
vector_size=3072, # Default vector size for embeddings
distance="Cosine", # Default distance metric
)
await vector_service.create_collection(collection_request)
logger.info(f"Collection '{dataroom.name}' created successfully")
else:
logger.info(
f"Collection '{dataroom.name}' already exists, skipping creation"
)
except Exception as e:
# Log the error but don't fail the dataroom creation
logger.warning(
f"Could not create collection for dataroom '{dataroom.name}': {e}"
)
return {
"message": "Dataroom created successfully",
"dataroom": {
"name": new_dataroom.name,
"collection": new_dataroom.collection,
"storage": new_dataroom.storage,
},
}
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Error creating dataroom: {str(e)}"
)
@router.delete("/{dataroom_name}")
async def delete_dataroom(dataroom_name: str):
"""
Eliminar un dataroom y su colección vectorial asociada
"""
try:
# First check if dataroom exists
existing_datarooms = DataRoom.find().all()
dataroom_exists = any(room.name == dataroom_name for room in existing_datarooms)
if not dataroom_exists:
raise HTTPException(
status_code=404, detail=f"Dataroom '{dataroom_name}' not found"
)
# Delete the vector collection first
try:
collection_exists = await vector_service.check_collection_exists(
dataroom_name
)
if collection_exists.exists:
await vector_service.delete_collection(dataroom_name)
logger.info(
f"Collection '{dataroom_name}' deleted from vector database"
)
except Exception as e:
logger.warning(
f"Could not delete collection '{dataroom_name}' from vector database: {e}"
)
# Continue with dataroom deletion even if collection deletion fails
# Delete the dataroom from Redis
for room in existing_datarooms:
if room.name == dataroom_name:
# Delete using the primary key
DataRoom.delete(room.pk)
logger.info(f"Dataroom '{dataroom_name}' deleted from Redis")
break
return {
"message": "Dataroom deleted successfully",
"dataroom_name": dataroom_name,
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error deleting dataroom '{dataroom_name}': {e}")
raise HTTPException(
status_code=500, detail=f"Error deleting dataroom: {str(e)}"
)