Files
Mayacontigo/notebooks/chunk_with_llm/notebook.py
Rogelio 325f1ef439 ic
2025-10-13 18:16:25 +00:00

708 lines
23 KiB
Python

import marimo
__generated_with = "0.13.15"
app = marimo.App(width="medium")
with app.setup:
import hashlib
import json
import logging
import textwrap
import time
from pathlib import Path
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from pdf2image import convert_from_path
from pypdf import PdfReader
from qdrant_client.models import Distance, PointStruct, VectorParams
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from banortegpt.embedding.azure_ada import Ada
from banortegpt.generation.vertex_ai_gemini import Gemini
from banortegpt.vector.qdrant import Qdrant
logger = logging.getLogger(__name__)
def load_prompt(prompt_file: str) -> str:
prompt_dir = Path("prompts/")
return (prompt_dir / prompt_file).read_text()
class TempFile:
temp_dir = Path("temp_dir/")
def __init__(self, name: str, contents: bytes):
self.name = name
self.contents = contents
def __enter__(self):
self.file = self.temp_dir / self.name
self.file.write_bytes(self.contents)
return self.file
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.unlink()
def id_from_json(json_data: dict) -> int:
json_str = json.dumps(json_data, sort_keys=True)
hash_obj = hashlib.sha256(json_str.encode("utf-8"))
return abs(int.from_bytes(hash_obj.digest(), byteorder="big"))
@app.class_definition(hide_code=True)
class PDFPageExtractor:
detect_special_format_prompt = load_prompt("detect_special_format_prompt.md")
def __init__(self, gemini_client: Gemini):
self.client = gemini_client
self._cache = {} # Cache para resultados de detección
def detect_special_format(self, chunk: Document) -> bool:
"""
Detecta si un chunk contiene tablas o formatos especiales.
Usa caché para evitar llamadas API repetidas.
"""
# Usar un hash simple del contenido como clave de caché
cache_key = hash(chunk.page_content)
if cache_key in self._cache:
return self._cache[cache_key]
start_time = time.time()
try:
prompt = self.detect_special_format_prompt.format(chunk.page_content)
response = self.client.generate(prompt).text
result = response.strip().upper() == "SI"
self._cache[cache_key] = result
logger.info(f"Tiempo de análisis de chunk: {time.time() - start_time:.2f}s")
return result
except Exception as e:
logger.error(f"Error detectando formato especial: {e}")
return False
def _create_chunks_from_pdf(
self, pdf_path: Path, chunk_size: int = 1000, chunk_overlap: int = 200
) -> list[Document]:
"""
Crea chunks a partir de un PDF manteniendo la información de la página original.
"""
start_time = time.time()
logger.info(f"Iniciando lectura del PDF: {pdf_path}")
pdf = PdfReader(pdf_path)
total_pages = len(pdf.pages)
logger.info(f"Total de páginas en el PDF: {total_pages}")
chunks = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
separators=["\n\n", "\n", " ", ""],
)
for page_num in range(total_pages):
page_start = time.time()
logger.info(f"Procesando página {page_num + 1}/{total_pages}...")
page = pdf.pages[page_num]
text = page.extract_text()
if text.strip():
page_chunks = text_splitter.create_documents(
[text],
metadatas=[{"page": page_num + 1, "file_name": pdf_path.name}],
)
chunks.extend(page_chunks)
logger.info(
f" - Chunks creados para página {page_num + 1}: {len(page_chunks)}"
)
else:
logger.info(f" - Página {page_num + 1} está vacía o no contiene texto")
logger.info(
f" - Tiempo de procesamiento página {page_num + 1}: {time.time() - page_start:.2f}s"
)
logger.info(
f"Tiempo total de procesamiento PDF: {time.time() - start_time:.2f}s"
)
logger.info(f"Total de chunks creados: {len(chunks)}")
return chunks
def process_pdf(
self,
pdf_path: Path,
output_dir: Path,
chunk_size: int = 1000,
chunk_overlap: int = 200,
) -> list[Document]:
"""
Procesa un PDF completo, detectando formatos especiales y extrayendo páginas.
"""
overall_start = time.time()
logger.info("\n=== Iniciando procesamiento de PDF ===")
if not output_dir.exists():
output_dir.mkdir()
logger.info(f"Directorio de salida creado: {output_dir}")
# Crear chunks del PDF
logger.info("\n1. Creando chunks del PDF...")
chunks_start = time.time()
chunks = self._create_chunks_from_pdf(pdf_path, chunk_size, chunk_overlap)
logger.info(f"Chunks creados en {time.time() - chunks_start:.2f}s")
processed_chunks = []
pages_to_extract = set()
# Identificar páginas con formatos especiales
logger.info("\n2. Analizando chunks para detectar formatos especiales...")
analysis_start = time.time()
for i, chunk in enumerate(chunks, 1):
logger.info(f"\nAnalizando chunk {i}/{len(chunks)}")
if self.detect_special_format(chunk):
page_number = chunk.metadata.get("page")
if page_number not in pages_to_extract:
pages_to_extract.add(page_number)
logger.info(
f" - Formato especial detectado en página {page_number}"
)
logger.info(f"Análisis completado en {time.time() - analysis_start:.2f}s")
logger.info(f"Páginas a extraer: {sorted(pages_to_extract)}")
# Extraer páginas con formatos especiales
if pages_to_extract:
logger.info("\n3. Extrayendo páginas como imágenes...")
extraction_start = time.time()
for page_number in sorted(pages_to_extract):
page_start = time.time()
logger.info(f"\nProcesando página {page_number}...")
pdf_filename = pdf_path.name
image_path = output_dir / f"{page_number}_{pdf_filename}.png"
try:
images = convert_from_path(
pdf_path,
first_page=page_number,
last_page=page_number,
dpi=150,
thread_count=4,
grayscale=False,
)
if images:
images[0].save(image_path, "PNG", optimize=True)
logger.info(f" - Imagen guardada: {image_path}")
logger.info(
f" - Tiempo de extracción: {time.time() - page_start:.2f}s"
)
except Exception as e:
logger.error(f" - Error extrayendo página {page_number}: {e}")
logger.info(
f"Extracción de imágenes completada en {time.time() - extraction_start:.2f}s"
)
# Procesar chunks y agregar referencias a imágenes
logger.info("\n4. Procesando chunks finales...")
for chunk in chunks:
page_number = chunk.metadata.get("page")
if page_number in pages_to_extract:
pdf_filename = pdf_path.name
image_path = output_dir / f"{page_number}_{pdf_filename}.png"
if image_path.exists():
image_reference = f"\n[Ver página {page_number} completa en imagen: {image_path}]\n"
chunk.page_content = image_reference + chunk.page_content
processed_chunks.append(chunk)
total_time = time.time() - overall_start
logger.info(f"\n=== Procesamiento completado en {total_time:.2f}s ===")
logger.info(f"Total de chunks procesados: {len(processed_chunks)}")
logger.info(f"Total de páginas extraídas como imagen: {len(pages_to_extract)}")
return processed_chunks
@app.class_definition(hide_code=True)
class ChunkProcessor:
should_merge_prompt = load_prompt("should_merge_prompt.md")
enhance_chunk_prompt = load_prompt("enhance_chunk_prompt.md")
MAX_TOKENS = 750 # límite máximo de tokens
def __init__(self, gemini_client: Gemini, chunks_per_page: int = 5):
self.client = gemini_client
self.chunks_per_page = chunks_per_page
def should_merge_chunks(self, chunk1: str, chunk2: str) -> bool:
"""
Determina si dos chunks deberían unirse basado en su contenido y longitud.
"""
try:
combined_length = len(chunk1) + len(chunk2)
if combined_length > 3375:
return False
prompt = self.should_merge_prompt.format(chunk1, chunk2)
response = self.client.generate(prompt).text
return response.strip().upper() == "SI"
except Exception as e:
logger.error(f"Error analizando chunks: {e}")
return False
def enhance_chunk(self, chunk_text: str) -> str:
"""Mejora un chunk individual manteniendo el límite de tokens."""
try:
prompt = self.enhance_chunk_prompt.format(chunk_text)
response = self.client.generate(prompt).text
enhanced_text = response.strip()
if len(enhanced_text) > 3375:
logger.warning(
"Advertencia: Texto optimizado excede el límite de tokens"
)
truncated = enhanced_text[:3375].rsplit(".", 1)[0] + "."
return truncated
return enhanced_text
except Exception as e:
logger.error(f"Error procesando chunk: {e}")
return chunk_text
def process_chunks(
self, chunks: list[Document], merge_related: bool = False
) -> list[Document]:
"""
Procesa y opcionalmente une chunks relacionados.
Args:
chunks: Lista de chunks a procesar
merge_related: Si es True, intenta unir chunks relacionados
Returns:
List[Document]: Lista de chunks procesados
"""
processed_chunks = []
i = 0
while i < len(chunks):
current_chunk = chunks[i]
merged_content = current_chunk.page_content
if merge_related and i < len(chunks) - 1:
while i < len(chunks) - 1 and self.should_merge_chunks(
merged_content, chunks[i + 1].page_content
):
logger.info(f"\nUniendo chunks {i + 1} y {i + 2}...")
merged_content += "\n\n" + chunks[i + 1].page_content
i += 1
logger.info(f"\nProcesando chunk {i + 1}:")
logger.info(textwrap.fill(merged_content, width=80))
logger.info("\nMejorando contenido")
enhanced_content = self.enhance_chunk(merged_content)
processed_chunks.append(
Document(page_content=enhanced_content, metadata=current_chunk.metadata)
)
logger.info("\nContenido mejorado")
logger.info(textwrap.fill(enhanced_content, width=80))
logger.info("-" * 80)
i += 1
if i % self.chunks_per_page == 0 and i < len(chunks):
continue_processing = "s" # input("\n¿Continuar con la siguiente página? (s/n): ").lower()
if continue_processing != "s":
break
return processed_chunks
@app.class_definition(hide_code=True)
class Pipeline:
def __init__(self, *, ada: Ada, qdrant: Qdrant, gemini: Gemini):
self.ada = ada
self.qdrant = qdrant
self.gemini = gemini
self.extractor = PDFPageExtractor(gemini_client=gemini)
self.processor = ChunkProcessor(gemini_client=gemini)
def run(self, name: str, contents: bytes):
with TempFile(name=name, contents=contents) as pdf:
chunks = self.extractor.process_pdf(pdf, Path("output_images"))
merged_enhanced_chunks = self.processor.process_chunks(
chunks, merge_related=True
)
points = self._build_points_from_chunks(merged_enhanced_chunks)
return points
def _build_points_from_chunks(self, chunks):
points = [
PointStruct(
id=id_from_json(document.metadata),
payload={
"page_content": document.page_content,
"metadata": document.metadata,
},
vector={self.ada.model: self.ada.embed(input=document.page_content)},
)
for document in chunks
]
return points
def upload_points(self, points: list[PointStruct]):
self.qdrant.create_collection_if_not_exists(
vector_config={
self.ada.model: VectorParams(size=3072, distance=Distance.COSINE)
}
)
self.qdrant.upload_to_collection(points=points)
@classmethod
def from_vault(
cls, vault: str, *, collection: str, embedding_model: str, gemini_model: str
):
return cls(
ada=Ada.from_vault(vault, model=embedding_model),
qdrant=Qdrant.from_vault(vault, collection=collection),
gemini=Gemini.from_vault(vault, model=gemini_model),
)
@app.class_definition(hide_code=True)
class ChunkDistGraph:
def __init__(
self,
points: list[dict],
campo_texto: str = "page_content",
titulo: str = "Distribución de Chunks por Longitud",
) -> None:
self.points = points
self.campo_texto = campo_texto
self.title = titulo
def show(self):
longitudes = self._obtener_longitudes()
plot = self._visualizar_distribucion_chunks(longitudes)
return plot.gcf()
def _obtener_longitudes(self) -> list[int]:
"""
Obtiene la longitud de todos los chunks de texto en una lista de puntos.
"""
longitudes = []
for point in self.points:
texto = point.payload[self.campo_texto]
longitudes.append(len(str(texto)))
return longitudes
def _visualizar_distribucion_chunks(self, longitudes: list[int]):
"""
Crea una visualización de la distribución de chunks según su longitud.
"""
plt.figure(figsize=(15, 6))
n_bins = int(np.log2(len(longitudes)) + 1)
n, bins, patches = plt.hist(
longitudes, bins=n_bins, color="skyblue", edgecolor="black", alpha=0.7
)
from scipy.stats import gaussian_kde
density = gaussian_kde(longitudes)
xs = np.linspace(min(longitudes), max(longitudes), 200)
plt.plot(
xs,
density(xs) * len(longitudes) * (bins[1] - bins[0]),
color="red",
linewidth=2,
label="Tendencia",
)
# Personalizar el gráfico
plt.title(self.title, fontsize=14, pad=20)
plt.xlabel("Cantidad de Caracteres", fontsize=12)
plt.ylabel("Cantidad de Chunks", fontsize=12)
media = np.mean(longitudes)
mediana = np.median(longitudes)
desv_std = np.std(longitudes)
stats_text = (
f"Estadísticas:\n"
f"• Media: {media:.1f} caracteres\n"
f"• Mediana: {mediana:.1f} caracteres\n"
f"• Desv. Estándar: {desv_std:.1f}\n"
f"• Total de chunks: {len(longitudes)}"
)
plt.text(
1.02,
0.95,
stats_text,
transform=plt.gca().transAxes,
bbox=dict(facecolor="white", alpha=0.8),
verticalalignment="top",
)
plt.tight_layout()
return plt
@app.class_definition(hide_code=True)
class ChunkDistGraph2:
def __init__(
self,
points: list[dict],
campo_texto: str = "page_content",
titulo: str = "Distribución de longitud de chunks",
) -> None:
self.points = points
self.campo_texto = campo_texto
self.titulo = titulo
def show(self):
chunks_info = self._obtener_longitudes_chunks()
longitudes = [length for length, _, _, _ in chunks_info]
chunks_extremos = self._encontrar_chunks_extremos(chunks_info)
print("\nInformación de la colección:")
print(f"Número total de chunks: {len(longitudes)}")
print(f"Número de longitudes únicas: {len(set(longitudes))}")
if longitudes:
print(f"Rango de longitudes: {min(longitudes)} a {max(longitudes)}")
fig = self._visualizar_distribucion(longitudes, chunks_extremos)
return fig.gcf()
def _obtener_longitudes_chunks(self) -> list[int]:
"""
Obtiene la longitud de todos los chunks de texto en una colección de Qdrant.
"""
chunks_info = []
for point in self.points: # Fixed: was using 'points' instead of 'self.points'
texto = point.payload[self.campo_texto]
chunks_info.append(
(
len(str(texto)),
str(texto)[:100],
str(point.id),
point.payload.get("metadata", {}).get("page", "N/A"),
)
)
return chunks_info
def _encontrar_chunks_extremos(
self, chunks_info: list[tuple[int, str, str, str]]
) -> dict:
"""
Encuentra los chunks más largo y más corto.
"""
if not chunks_info:
return {}
chunk_mas_corto = min(chunks_info, key=lambda x: x[0])
chunk_mas_largo = max(chunks_info, key=lambda x: x[0])
return {
"mas_corto": {
"longitud": chunk_mas_corto[0],
"preview": chunk_mas_corto[1] + "..."
if len(chunk_mas_corto[1]) == 100
else chunk_mas_corto[1],
"id": chunk_mas_corto[2],
"page": chunk_mas_corto[3],
},
"mas_largo": {
"longitud": chunk_mas_largo[0],
"preview": chunk_mas_largo[1] + "..."
if len(chunk_mas_largo[1]) == 100
else chunk_mas_largo[1],
"id": chunk_mas_largo[2],
"page": chunk_mas_largo[3],
},
}
def _visualizar_distribucion(self, longitudes: list[int], chunks_extremos: dict):
"""
Crea una visualización suavizada de la distribución de longitudes.
"""
if not longitudes:
raise ValueError("No hay datos para visualizar")
longitudes = [float(x) for x in longitudes]
plt.figure(figsize=(15, 6))
n_bins = max(10, min(50, len(set(longitudes)) // 2))
if len(longitudes) < 2:
plt.text(
0.5,
0.5,
"Datos insuficientes para visualización",
ha="center",
va="center",
)
return plt.gcf()
counts, bins, _ = plt.hist(
longitudes,
bins=n_bins,
density=True,
alpha=0.6,
color="skyblue",
edgecolor="black",
)
bin_centers = (bins[:-1] + bins[1:]) / 2
window_size = 5
if len(counts) > window_size:
smoothed = np.convolve(
counts, np.ones(window_size) / window_size, mode="valid"
)
smoothed_x = bin_centers[window_size - 1 :]
plt.plot(smoothed_x, smoothed, color="blue", linewidth=2, alpha=0.8)
plt.title(self.titulo, fontsize=14, pad=5) # Reduced pad from 20 to 5
plt.xlabel("Longitud del chunk (caracteres)", fontsize=12)
plt.ylabel("Densidad", fontsize=12)
media = np.mean(longitudes)
mediana = np.median(longitudes)
desv_std = np.std(longitudes)
info_text = (
f"Estadísticas:\n"
f"• Media: {media:.1f} caracteres\n"
f"• Mediana: {mediana:.1f} caracteres\n"
f"• Desv. Estándar: {desv_std:.1f}\n\n"
f"Chunks Extremos:\n\n"
f"• Más corto: {chunks_extremos['mas_corto']['longitud']} caracteres\n"
f" ID para buscar en dashboard: \n"
f" {chunks_extremos['mas_corto']['id']}\n"
f" Página: {chunks_extremos['mas_corto'].get('page', 'N/A')}\n"
f" Preview: {chunks_extremos['mas_corto']['preview']}\n\n"
f"• Más largo: {chunks_extremos['mas_largo']['longitud']} caracteres\n"
f" ID para buscar en dashboard: \n"
f" {chunks_extremos['mas_largo']['id']}\n"
f" Página: {chunks_extremos['mas_largo'].get('page', 'N/A')}\n"
f" Preview: {chunks_extremos['mas_largo']['preview']}"
)
plt.figtext(
1.02,
0.5,
info_text,
fontsize=10,
bbox=dict(facecolor="white", alpha=0.8, edgecolor="none"),
wrap=True,
)
# Remove whitespace at the top by adjusting subplots
plt.subplots_adjust(top=0.92, bottom=0.1, left=0.08, right=0.75)
return plt
@app.cell
def _():
import marimo as mo
logger.setLevel(logging.INFO)
return (mo,)
@app.cell
def _():
pipeline = Pipeline.from_vault(
"banortegpt",
collection="MayaNormativa",
embedding_model="text-embedding-3-large",
gemini_model="gemini-1.5-flash",
)
return (pipeline,)
@app.cell
def _(mo):
uploads = mo.ui.file(filetypes=[".pdf"], kind="area", multiple=True).form()
uploads
return (uploads,)
@app.cell
def _(mo, pipeline, uploads):
mo.stop(uploads.value is None)
points = [
point
for upload in mo.status.progress_bar(uploads.value, remove_on_exit=True)
for point in pipeline.run(upload.name, upload.contents)
]
return (points,)
@app.cell
def _(points):
ChunkDistGraph(points).show()
return
@app.cell
def _():
# ChunkDistGraph2(points).show()
return
@app.cell
def _(points):
import polars as pl
pl.from_records([p.payload for p in points])
return
@app.cell
def _(mo):
upload_button = mo.ui.run_button(label="Upload to Qdrant", kind="success")
upload_button
return (upload_button,)
@app.cell
def _(mo, pipeline, points, upload_button):
mo.stop(upload_button.value is False)
pipeline.upload_points(points)
return
@app.cell
def _():
return
if __name__ == "__main__":
app.run()