Files
Mayacontigo/apps/normativa/api/config.py
Rogelio 325f1ef439 ic
2025-10-13 18:16:25 +00:00

55 lines
1.9 KiB
Python

from hvac import Client
from pydantic import Field
from pydantic_settings import BaseSettings
client = Client(url="https://vault.ia-innovacion.work")
if not client.is_authenticated():
raise Exception("Vault authentication failed")
secret_map = client.secrets.kv.v2.read_secret_version(
path="banortegpt", mount_point="secret"
)["data"]["data"]
class Settings(BaseSettings):
# Config básico
model: str = "gpt-4o"
model_temperature: int = 0
message_limit: int = 10
host: str = "0.0.0.0"
port: int = 8000
# AGREGAR ESTAS LÍNEAS (igual que OCP):
embedding_model: str = "text-embedding-3-large"
storage_bucket: str = "normativa-bucket" # Ajusta el nombre
vector_index: str = "MayaNormativaLLM"
search_limit: int = 3
# API Keys existentes
azure_endpoint: str = Field(default_factory=lambda: secret_map["azure_endpoint"])
openai_api_key: str = Field(default_factory=lambda: secret_map["openai_api_key"])
openai_api_version: str = Field(default_factory=lambda: secret_map["openai_api_version"])
mongodb_url: str = Field(default_factory=lambda: secret_map["cosmosdb_connection_string"])
# AGREGAR ESTAS LÍNEAS (igual que OCP):
azure_blob_connection_string: str = Field(
default_factory=lambda: secret_map["azure_blob_connection_string"]
)
qdrant_url: str = Field(default_factory=lambda: secret_map["qdrant_api_url"])
qdrant_api_key: str | None = Field(
default_factory=lambda: secret_map["qdrant_api_key"]
)
async def init_mongo_db(self):
from banortegpt.database.mongo_memory.models import Conversation
from beanie import init_beanie
from motor.motor_asyncio import AsyncIOMotorClient
client = AsyncIOMotorClient(self.mongodb_url)
await init_beanie(
database=client.banortegptdos,
document_models=[Conversation],
)
config = Settings()