Files
Mayacontigo/packages/azure-ada/banortegpt/embedding/azure_ada/blocking.py
Rogelio 325f1ef439 ic
2025-10-13 18:16:25 +00:00

48 lines
1.6 KiB
Python

from langfuse.openai import AzureOpenAI
from openai.types.embedding import Embedding
from .base import BaseAda
class Ada(BaseAda):
def __init__(
self, model: str | None = None, *, endpoint: str, key: str, version: str
) -> None:
super().__init__(model, endpoint=endpoint, key=key, version=version)
self.client = AzureOpenAI(
azure_endpoint=endpoint, api_key=key, api_version=version
)
def embed(
self, input: str | list[str], *, model: str | None = None
) -> list[float] | list[list[float]]:
if isinstance(input, str):
return self.embed_query(input, model)
else:
return self.batch_embed(input, model)
def batch_embed(
self, texts: list[str], model: str | None = None
) -> list[list[float]]:
if model is None:
if self.model is None:
raise ValueError("No embedding model set")
model = self.model
batches = [texts[i : i + 2048] for i in range(0, len(texts), 2048)]
results = [
(self.client.embeddings.create(input=batch, model=model)).data
for batch in batches
]
flattened_results: list[Embedding] = sum(results, [])
return [result.embedding for result in flattened_results]
def embed_query(self, text: str, model: str | None = None) -> list[float]:
if model is None:
if self.model is None:
raise ValueError("No embedding model set")
model = self.model
response = self.client.embeddings.create(input=text, model=model)
return response.data[0].embedding