import logging from pathlib import Path from typing import Any from langchain_core.messages.ai import AIMessageChunk from pydantic import BaseModel, Field from banortegpt.storage.azure_storage import AzureStorage from banortegpt.vector.qdrant import AsyncQdrant from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel import api.context as ctx from api.config import config logger = logging.getLogger(__name__) parent = Path(__file__).parent SYSTEM_PROMPT = (parent / "system_prompt.md").read_text() class get_information(BaseModel): """Search a private repository for information.""" question: str = Field(..., description="The user question") AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com" class MayaOCP: system_prompt = SYSTEM_PROMPT generation_config = { "temperature": config.model_temperature, } message_limit = config.message_limit index = config.vector_index limit = config.search_limit bucket = config.storage_bucket search = AsyncQdrant.from_config(config) llm = AzureAIChatCompletionsModel( endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}", credential=config.openai_api_key, ).bind_tools([get_information]) embedder = AzureAIEmbeddingsModel( endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}", credential=config.openai_api_key, ) storage = AzureStorage.from_config(config) def __init__(self) -> None: self.tool_map = {"get_information": self.get_information} def build_response(self, payloads): preface = ["Recuerda citar las referencias en el formato: texto[1]."] template = "------ REFERENCIA {index} ----- \n\n{content}" filled_templates = [ template.format(index=idx, content=payload.get("content", "")) for idx, payload in enumerate(payloads) ] return "\n".join(preface + filled_templates) async def get_information(self, question: str): logger.info( f"Embedding question: {question} with model {self.embedder.model_name}" ) embedding = await self.embedder.aembed_query(question) results = await self.search.semantic_search( embedding=embedding, collection=self.index, limit=self.limit ) tool_response = self.build_response(results) return tool_response, results async def get_shareable_urls(self, metadatas: list): reference_urls = [] image_urls = [] for metadata in metadatas: if file := metadata.get("file"): reference_url = await self.storage.get_file_url( filename=file, bucket=self.bucket, minute_duration=20, image=False, ) reference_urls.append(reference_url) if image_file := metadata.get("image"): image_url = await self.storage.get_file_url( filename=image_file, bucket=self.bucket, minute_duration=20, image=True, ) image_urls.append(image_url) return reference_urls, image_urls def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]: generation_config_copy = self.generation_config.copy() if overwrites: for k, v in overwrites.items(): generation_config_copy[k] = v return generation_config_copy async def stream(self, history, overwrites: dict | None = None): generation_config = self._generation_config_overwrite(overwrites) async for chunk in self.llm.astream(input=history, **generation_config): assert isinstance(chunk, AIMessageChunk) if call := chunk.tool_call_chunks: if tool_id := call[0].get("id"): ctx.tool_id.set(tool_id) if name := call[0].get("name"): ctx.tool_name.set(name) if args := call[0].get("args"): ctx.tool_buffer.set(ctx.tool_buffer.get() + args) else: if buffer := chunk.content: assert isinstance(buffer, str) ctx.buffer.set(ctx.buffer.get() + buffer) yield buffer async def generate(self, history, overwrites: dict | None = None): generation_config = self._generation_config_overwrite(overwrites) return await self.llm.ainvoke(input=history, **generation_config)