This commit is contained in:
Rogelio
2025-10-13 18:16:25 +00:00
parent 739f087cef
commit 325f1ef439
415 changed files with 46870 additions and 0 deletions

View File

View File

@@ -0,0 +1,9 @@
[tools]
azure-functions-core-tools = "latest"
[tasks.edit]
description = "Run 'chunk_with_llm' notebook in editable mode."
run = "uv run marimo edit notebook.py"
[tasks.worker]
run = "uv run taskiq worker broker:broker"

View File

@@ -0,0 +1,707 @@
import marimo
__generated_with = "0.13.15"
app = marimo.App(width="medium")
with app.setup:
import hashlib
import json
import logging
import textwrap
import time
from pathlib import Path
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from pdf2image import convert_from_path
from pypdf import PdfReader
from qdrant_client.models import Distance, PointStruct, VectorParams
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from banortegpt.embedding.azure_ada import Ada
from banortegpt.generation.vertex_ai_gemini import Gemini
from banortegpt.vector.qdrant import Qdrant
logger = logging.getLogger(__name__)
def load_prompt(prompt_file: str) -> str:
prompt_dir = Path("prompts/")
return (prompt_dir / prompt_file).read_text()
class TempFile:
temp_dir = Path("temp_dir/")
def __init__(self, name: str, contents: bytes):
self.name = name
self.contents = contents
def __enter__(self):
self.file = self.temp_dir / self.name
self.file.write_bytes(self.contents)
return self.file
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.unlink()
def id_from_json(json_data: dict) -> int:
json_str = json.dumps(json_data, sort_keys=True)
hash_obj = hashlib.sha256(json_str.encode("utf-8"))
return abs(int.from_bytes(hash_obj.digest(), byteorder="big"))
@app.class_definition(hide_code=True)
class PDFPageExtractor:
detect_special_format_prompt = load_prompt("detect_special_format_prompt.md")
def __init__(self, gemini_client: Gemini):
self.client = gemini_client
self._cache = {} # Cache para resultados de detección
def detect_special_format(self, chunk: Document) -> bool:
"""
Detecta si un chunk contiene tablas o formatos especiales.
Usa caché para evitar llamadas API repetidas.
"""
# Usar un hash simple del contenido como clave de caché
cache_key = hash(chunk.page_content)
if cache_key in self._cache:
return self._cache[cache_key]
start_time = time.time()
try:
prompt = self.detect_special_format_prompt.format(chunk.page_content)
response = self.client.generate(prompt).text
result = response.strip().upper() == "SI"
self._cache[cache_key] = result
logger.info(f"Tiempo de análisis de chunk: {time.time() - start_time:.2f}s")
return result
except Exception as e:
logger.error(f"Error detectando formato especial: {e}")
return False
def _create_chunks_from_pdf(
self, pdf_path: Path, chunk_size: int = 1000, chunk_overlap: int = 200
) -> list[Document]:
"""
Crea chunks a partir de un PDF manteniendo la información de la página original.
"""
start_time = time.time()
logger.info(f"Iniciando lectura del PDF: {pdf_path}")
pdf = PdfReader(pdf_path)
total_pages = len(pdf.pages)
logger.info(f"Total de páginas en el PDF: {total_pages}")
chunks = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
separators=["\n\n", "\n", " ", ""],
)
for page_num in range(total_pages):
page_start = time.time()
logger.info(f"Procesando página {page_num + 1}/{total_pages}...")
page = pdf.pages[page_num]
text = page.extract_text()
if text.strip():
page_chunks = text_splitter.create_documents(
[text],
metadatas=[{"page": page_num + 1, "file_name": pdf_path.name}],
)
chunks.extend(page_chunks)
logger.info(
f" - Chunks creados para página {page_num + 1}: {len(page_chunks)}"
)
else:
logger.info(f" - Página {page_num + 1} está vacía o no contiene texto")
logger.info(
f" - Tiempo de procesamiento página {page_num + 1}: {time.time() - page_start:.2f}s"
)
logger.info(
f"Tiempo total de procesamiento PDF: {time.time() - start_time:.2f}s"
)
logger.info(f"Total de chunks creados: {len(chunks)}")
return chunks
def process_pdf(
self,
pdf_path: Path,
output_dir: Path,
chunk_size: int = 1000,
chunk_overlap: int = 200,
) -> list[Document]:
"""
Procesa un PDF completo, detectando formatos especiales y extrayendo páginas.
"""
overall_start = time.time()
logger.info("\n=== Iniciando procesamiento de PDF ===")
if not output_dir.exists():
output_dir.mkdir()
logger.info(f"Directorio de salida creado: {output_dir}")
# Crear chunks del PDF
logger.info("\n1. Creando chunks del PDF...")
chunks_start = time.time()
chunks = self._create_chunks_from_pdf(pdf_path, chunk_size, chunk_overlap)
logger.info(f"Chunks creados en {time.time() - chunks_start:.2f}s")
processed_chunks = []
pages_to_extract = set()
# Identificar páginas con formatos especiales
logger.info("\n2. Analizando chunks para detectar formatos especiales...")
analysis_start = time.time()
for i, chunk in enumerate(chunks, 1):
logger.info(f"\nAnalizando chunk {i}/{len(chunks)}")
if self.detect_special_format(chunk):
page_number = chunk.metadata.get("page")
if page_number not in pages_to_extract:
pages_to_extract.add(page_number)
logger.info(
f" - Formato especial detectado en página {page_number}"
)
logger.info(f"Análisis completado en {time.time() - analysis_start:.2f}s")
logger.info(f"Páginas a extraer: {sorted(pages_to_extract)}")
# Extraer páginas con formatos especiales
if pages_to_extract:
logger.info("\n3. Extrayendo páginas como imágenes...")
extraction_start = time.time()
for page_number in sorted(pages_to_extract):
page_start = time.time()
logger.info(f"\nProcesando página {page_number}...")
pdf_filename = pdf_path.name
image_path = output_dir / f"{page_number}_{pdf_filename}.png"
try:
images = convert_from_path(
pdf_path,
first_page=page_number,
last_page=page_number,
dpi=150,
thread_count=4,
grayscale=False,
)
if images:
images[0].save(image_path, "PNG", optimize=True)
logger.info(f" - Imagen guardada: {image_path}")
logger.info(
f" - Tiempo de extracción: {time.time() - page_start:.2f}s"
)
except Exception as e:
logger.error(f" - Error extrayendo página {page_number}: {e}")
logger.info(
f"Extracción de imágenes completada en {time.time() - extraction_start:.2f}s"
)
# Procesar chunks y agregar referencias a imágenes
logger.info("\n4. Procesando chunks finales...")
for chunk in chunks:
page_number = chunk.metadata.get("page")
if page_number in pages_to_extract:
pdf_filename = pdf_path.name
image_path = output_dir / f"{page_number}_{pdf_filename}.png"
if image_path.exists():
image_reference = f"\n[Ver página {page_number} completa en imagen: {image_path}]\n"
chunk.page_content = image_reference + chunk.page_content
processed_chunks.append(chunk)
total_time = time.time() - overall_start
logger.info(f"\n=== Procesamiento completado en {total_time:.2f}s ===")
logger.info(f"Total de chunks procesados: {len(processed_chunks)}")
logger.info(f"Total de páginas extraídas como imagen: {len(pages_to_extract)}")
return processed_chunks
@app.class_definition(hide_code=True)
class ChunkProcessor:
should_merge_prompt = load_prompt("should_merge_prompt.md")
enhance_chunk_prompt = load_prompt("enhance_chunk_prompt.md")
MAX_TOKENS = 750 # límite máximo de tokens
def __init__(self, gemini_client: Gemini, chunks_per_page: int = 5):
self.client = gemini_client
self.chunks_per_page = chunks_per_page
def should_merge_chunks(self, chunk1: str, chunk2: str) -> bool:
"""
Determina si dos chunks deberían unirse basado en su contenido y longitud.
"""
try:
combined_length = len(chunk1) + len(chunk2)
if combined_length > 3375:
return False
prompt = self.should_merge_prompt.format(chunk1, chunk2)
response = self.client.generate(prompt).text
return response.strip().upper() == "SI"
except Exception as e:
logger.error(f"Error analizando chunks: {e}")
return False
def enhance_chunk(self, chunk_text: str) -> str:
"""Mejora un chunk individual manteniendo el límite de tokens."""
try:
prompt = self.enhance_chunk_prompt.format(chunk_text)
response = self.client.generate(prompt).text
enhanced_text = response.strip()
if len(enhanced_text) > 3375:
logger.warning(
"Advertencia: Texto optimizado excede el límite de tokens"
)
truncated = enhanced_text[:3375].rsplit(".", 1)[0] + "."
return truncated
return enhanced_text
except Exception as e:
logger.error(f"Error procesando chunk: {e}")
return chunk_text
def process_chunks(
self, chunks: list[Document], merge_related: bool = False
) -> list[Document]:
"""
Procesa y opcionalmente une chunks relacionados.
Args:
chunks: Lista de chunks a procesar
merge_related: Si es True, intenta unir chunks relacionados
Returns:
List[Document]: Lista de chunks procesados
"""
processed_chunks = []
i = 0
while i < len(chunks):
current_chunk = chunks[i]
merged_content = current_chunk.page_content
if merge_related and i < len(chunks) - 1:
while i < len(chunks) - 1 and self.should_merge_chunks(
merged_content, chunks[i + 1].page_content
):
logger.info(f"\nUniendo chunks {i + 1} y {i + 2}...")
merged_content += "\n\n" + chunks[i + 1].page_content
i += 1
logger.info(f"\nProcesando chunk {i + 1}:")
logger.info(textwrap.fill(merged_content, width=80))
logger.info("\nMejorando contenido")
enhanced_content = self.enhance_chunk(merged_content)
processed_chunks.append(
Document(page_content=enhanced_content, metadata=current_chunk.metadata)
)
logger.info("\nContenido mejorado")
logger.info(textwrap.fill(enhanced_content, width=80))
logger.info("-" * 80)
i += 1
if i % self.chunks_per_page == 0 and i < len(chunks):
continue_processing = "s" # input("\n¿Continuar con la siguiente página? (s/n): ").lower()
if continue_processing != "s":
break
return processed_chunks
@app.class_definition(hide_code=True)
class Pipeline:
def __init__(self, *, ada: Ada, qdrant: Qdrant, gemini: Gemini):
self.ada = ada
self.qdrant = qdrant
self.gemini = gemini
self.extractor = PDFPageExtractor(gemini_client=gemini)
self.processor = ChunkProcessor(gemini_client=gemini)
def run(self, name: str, contents: bytes):
with TempFile(name=name, contents=contents) as pdf:
chunks = self.extractor.process_pdf(pdf, Path("output_images"))
merged_enhanced_chunks = self.processor.process_chunks(
chunks, merge_related=True
)
points = self._build_points_from_chunks(merged_enhanced_chunks)
return points
def _build_points_from_chunks(self, chunks):
points = [
PointStruct(
id=id_from_json(document.metadata),
payload={
"page_content": document.page_content,
"metadata": document.metadata,
},
vector={self.ada.model: self.ada.embed(input=document.page_content)},
)
for document in chunks
]
return points
def upload_points(self, points: list[PointStruct]):
self.qdrant.create_collection_if_not_exists(
vector_config={
self.ada.model: VectorParams(size=3072, distance=Distance.COSINE)
}
)
self.qdrant.upload_to_collection(points=points)
@classmethod
def from_vault(
cls, vault: str, *, collection: str, embedding_model: str, gemini_model: str
):
return cls(
ada=Ada.from_vault(vault, model=embedding_model),
qdrant=Qdrant.from_vault(vault, collection=collection),
gemini=Gemini.from_vault(vault, model=gemini_model),
)
@app.class_definition(hide_code=True)
class ChunkDistGraph:
def __init__(
self,
points: list[dict],
campo_texto: str = "page_content",
titulo: str = "Distribución de Chunks por Longitud",
) -> None:
self.points = points
self.campo_texto = campo_texto
self.title = titulo
def show(self):
longitudes = self._obtener_longitudes()
plot = self._visualizar_distribucion_chunks(longitudes)
return plot.gcf()
def _obtener_longitudes(self) -> list[int]:
"""
Obtiene la longitud de todos los chunks de texto en una lista de puntos.
"""
longitudes = []
for point in self.points:
texto = point.payload[self.campo_texto]
longitudes.append(len(str(texto)))
return longitudes
def _visualizar_distribucion_chunks(self, longitudes: list[int]):
"""
Crea una visualización de la distribución de chunks según su longitud.
"""
plt.figure(figsize=(15, 6))
n_bins = int(np.log2(len(longitudes)) + 1)
n, bins, patches = plt.hist(
longitudes, bins=n_bins, color="skyblue", edgecolor="black", alpha=0.7
)
from scipy.stats import gaussian_kde
density = gaussian_kde(longitudes)
xs = np.linspace(min(longitudes), max(longitudes), 200)
plt.plot(
xs,
density(xs) * len(longitudes) * (bins[1] - bins[0]),
color="red",
linewidth=2,
label="Tendencia",
)
# Personalizar el gráfico
plt.title(self.title, fontsize=14, pad=20)
plt.xlabel("Cantidad de Caracteres", fontsize=12)
plt.ylabel("Cantidad de Chunks", fontsize=12)
media = np.mean(longitudes)
mediana = np.median(longitudes)
desv_std = np.std(longitudes)
stats_text = (
f"Estadísticas:\n"
f"• Media: {media:.1f} caracteres\n"
f"• Mediana: {mediana:.1f} caracteres\n"
f"• Desv. Estándar: {desv_std:.1f}\n"
f"• Total de chunks: {len(longitudes)}"
)
plt.text(
1.02,
0.95,
stats_text,
transform=plt.gca().transAxes,
bbox=dict(facecolor="white", alpha=0.8),
verticalalignment="top",
)
plt.tight_layout()
return plt
@app.class_definition(hide_code=True)
class ChunkDistGraph2:
def __init__(
self,
points: list[dict],
campo_texto: str = "page_content",
titulo: str = "Distribución de longitud de chunks",
) -> None:
self.points = points
self.campo_texto = campo_texto
self.titulo = titulo
def show(self):
chunks_info = self._obtener_longitudes_chunks()
longitudes = [length for length, _, _, _ in chunks_info]
chunks_extremos = self._encontrar_chunks_extremos(chunks_info)
print("\nInformación de la colección:")
print(f"Número total de chunks: {len(longitudes)}")
print(f"Número de longitudes únicas: {len(set(longitudes))}")
if longitudes:
print(f"Rango de longitudes: {min(longitudes)} a {max(longitudes)}")
fig = self._visualizar_distribucion(longitudes, chunks_extremos)
return fig.gcf()
def _obtener_longitudes_chunks(self) -> list[int]:
"""
Obtiene la longitud de todos los chunks de texto en una colección de Qdrant.
"""
chunks_info = []
for point in self.points: # Fixed: was using 'points' instead of 'self.points'
texto = point.payload[self.campo_texto]
chunks_info.append(
(
len(str(texto)),
str(texto)[:100],
str(point.id),
point.payload.get("metadata", {}).get("page", "N/A"),
)
)
return chunks_info
def _encontrar_chunks_extremos(
self, chunks_info: list[tuple[int, str, str, str]]
) -> dict:
"""
Encuentra los chunks más largo y más corto.
"""
if not chunks_info:
return {}
chunk_mas_corto = min(chunks_info, key=lambda x: x[0])
chunk_mas_largo = max(chunks_info, key=lambda x: x[0])
return {
"mas_corto": {
"longitud": chunk_mas_corto[0],
"preview": chunk_mas_corto[1] + "..."
if len(chunk_mas_corto[1]) == 100
else chunk_mas_corto[1],
"id": chunk_mas_corto[2],
"page": chunk_mas_corto[3],
},
"mas_largo": {
"longitud": chunk_mas_largo[0],
"preview": chunk_mas_largo[1] + "..."
if len(chunk_mas_largo[1]) == 100
else chunk_mas_largo[1],
"id": chunk_mas_largo[2],
"page": chunk_mas_largo[3],
},
}
def _visualizar_distribucion(self, longitudes: list[int], chunks_extremos: dict):
"""
Crea una visualización suavizada de la distribución de longitudes.
"""
if not longitudes:
raise ValueError("No hay datos para visualizar")
longitudes = [float(x) for x in longitudes]
plt.figure(figsize=(15, 6))
n_bins = max(10, min(50, len(set(longitudes)) // 2))
if len(longitudes) < 2:
plt.text(
0.5,
0.5,
"Datos insuficientes para visualización",
ha="center",
va="center",
)
return plt.gcf()
counts, bins, _ = plt.hist(
longitudes,
bins=n_bins,
density=True,
alpha=0.6,
color="skyblue",
edgecolor="black",
)
bin_centers = (bins[:-1] + bins[1:]) / 2
window_size = 5
if len(counts) > window_size:
smoothed = np.convolve(
counts, np.ones(window_size) / window_size, mode="valid"
)
smoothed_x = bin_centers[window_size - 1 :]
plt.plot(smoothed_x, smoothed, color="blue", linewidth=2, alpha=0.8)
plt.title(self.titulo, fontsize=14, pad=5) # Reduced pad from 20 to 5
plt.xlabel("Longitud del chunk (caracteres)", fontsize=12)
plt.ylabel("Densidad", fontsize=12)
media = np.mean(longitudes)
mediana = np.median(longitudes)
desv_std = np.std(longitudes)
info_text = (
f"Estadísticas:\n"
f"• Media: {media:.1f} caracteres\n"
f"• Mediana: {mediana:.1f} caracteres\n"
f"• Desv. Estándar: {desv_std:.1f}\n\n"
f"Chunks Extremos:\n\n"
f"• Más corto: {chunks_extremos['mas_corto']['longitud']} caracteres\n"
f" ID para buscar en dashboard: \n"
f" {chunks_extremos['mas_corto']['id']}\n"
f" Página: {chunks_extremos['mas_corto'].get('page', 'N/A')}\n"
f" Preview: {chunks_extremos['mas_corto']['preview']}\n\n"
f"• Más largo: {chunks_extremos['mas_largo']['longitud']} caracteres\n"
f" ID para buscar en dashboard: \n"
f" {chunks_extremos['mas_largo']['id']}\n"
f" Página: {chunks_extremos['mas_largo'].get('page', 'N/A')}\n"
f" Preview: {chunks_extremos['mas_largo']['preview']}"
)
plt.figtext(
1.02,
0.5,
info_text,
fontsize=10,
bbox=dict(facecolor="white", alpha=0.8, edgecolor="none"),
wrap=True,
)
# Remove whitespace at the top by adjusting subplots
plt.subplots_adjust(top=0.92, bottom=0.1, left=0.08, right=0.75)
return plt
@app.cell
def _():
import marimo as mo
logger.setLevel(logging.INFO)
return (mo,)
@app.cell
def _():
pipeline = Pipeline.from_vault(
"banortegpt",
collection="MayaNormativa",
embedding_model="text-embedding-3-large",
gemini_model="gemini-1.5-flash",
)
return (pipeline,)
@app.cell
def _(mo):
uploads = mo.ui.file(filetypes=[".pdf"], kind="area", multiple=True).form()
uploads
return (uploads,)
@app.cell
def _(mo, pipeline, uploads):
mo.stop(uploads.value is None)
points = [
point
for upload in mo.status.progress_bar(uploads.value, remove_on_exit=True)
for point in pipeline.run(upload.name, upload.contents)
]
return (points,)
@app.cell
def _(points):
ChunkDistGraph(points).show()
return
@app.cell
def _():
# ChunkDistGraph2(points).show()
return
@app.cell
def _(points):
import polars as pl
pl.from_records([p.payload for p in points])
return
@app.cell
def _(mo):
upload_button = mo.ui.run_button(label="Upload to Qdrant", kind="success")
upload_button
return (upload_button,)
@app.cell
def _(mo, pipeline, points, upload_button):
mo.stop(upload_button.value is False)
pipeline.upload_points(points)
return
@app.cell
def _():
return
if __name__ == "__main__":
app.run()

View File

@@ -0,0 +1,26 @@
Analiza este fragmento de texto y determina si contiene alguno de estos elementos:
1. Tablas estructuradas:
- Columnas claramente definidas
- Múltiples filas de datos
- Formato tabular que requiere mantener el espaciado
2. Elementos visuales o especiales:
- Diagramas o figuras en ASCII art
- Representaciones gráficas en texto
- Fórmulas o ecuaciones con formato especial
- Firmas o sellos digitales
- Elementos que requieren alineación específica
NO consideres como elementos especiales:
- Listas simples de elementos
- Texto con sangrías o indentación normal
- Párrafos con formato estándar
- Referencias o citas regulares
- Texto normal con espaciado simple
Responde SOLO con 'SI' si detectas CLARAMENTE alguno de los elementos listados arriba,
o 'NO' para texto normal sin elementos especiales.
Texto a analizar:
{}

View File

@@ -0,0 +1,12 @@
Optimiza este texto manteniendo estas reglas ESTRICTAS:
1. NO DEBE exceder 750 tokens (aprox. 3375 caracteres en español)
2. Mantener TODA la información importante y metadatos
3. NO cambiar palabras clave o términos técnicos
4. Asegurar que cada oración sea completa y coherente
5. Si el texto excede el límite, priorizar mantener oraciones completas
OBJETIVO: Texto coherente y completo dentro del límite de tokens.
Texto a optimizar:
{}

View File

@@ -0,0 +1,18 @@
Analiza estos dos fragmentos de texto y determina si deben unirse.
IMPORTANTE: La longitud combinada NO debe exceder ~750 tokens (3375 caracteres).
Criterios ESTRICTOS de unión:
1. El primer fragmento termina a mitad de una oración/palabra
2. El segundo fragmento es la continuación directa del primero
3. La unión resultante debe ser coherente y no exceder 750 tokens
Responde ÚNICAMENTE con:
- 'SI': si cumple TODOS los criterios y la unión es NECESARIA
- 'NO': en cualquier otro caso
Texto 1:
{}
Texto 2:
{}

View File

@@ -0,0 +1,31 @@
[project]
name = "chunk-with-llm"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"azure-ada",
"qdrant",
"vertex-ai-gemini",
"langchain>=0.3.25",
"langchain-experimental>=0.3.4",
"langchain-openai>=0.3.16",
"marimo>=0.13.10",
"openai>=1.72.0",
"pdf2image>=1.17.0",
"pypdf>=5.5.0",
"python-dotenv>=1.0.1",
"qdrant-client>=1.12.2",
"matplotlib>=3.10.3",
"seaborn>=0.13.2",
"scipy>=1.15.3",
]
[tool.uv.sources]
azure-ada = { workspace = true }
qdrant = { workspace = true }
vertex-ai-gemini = { workspace = true }
[dependency-groups]
dev = ["polars>=1.29.0"]

3520
notebooks/chunk_with_llm/uv.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

View File

@@ -0,0 +1,189 @@
import marimo
__generated_with = "0.13.15"
app = marimo.App(width="medium")
with app.setup:
import marimo as mo
from banortegpt.embedding.azure_ada import Ada
from banortegpt.vector.qdrant import Qdrant
ada = Ada.from_vault("banortegpt")
qdrant = Qdrant.from_vault("banortegpt")
collections = qdrant.list_collections()
@app.cell
def _():
import os
settings = (
mo.md(
"""
Content Field: {campo_texto}\n
Embedding Model: {embedding_model}\n
Collection: {collection}\n
Score Threshold: {threshold}\n
Synthetic Questions: {synthetic_questions}
"""
)
.batch(
campo_texto=mo.ui.text(value="page_content"),
embedding_model=mo.ui.text(value="text-embedding-3-large"),
collection=mo.ui.dropdown(collections, searchable=True),
threshold=mo.ui.number(value=0.5, step=0.1),
synthetic_questions=mo.ui.file(filetypes=[".json"]),
)
.form(bordered=True)
)
settings
return (settings,)
@app.cell
def _(settings):
import json
mo.stop(not settings.value)
stg = settings.value
EMBEDDING_MODEL = stg["embedding_model"]
COLLECTION = stg["collection"]
THRESHOLD = stg["threshold"]
QUESTIONS = json.loads(stg["synthetic_questions"][0].contents)
ada.model = EMBEDDING_MODEL
return COLLECTION, QUESTIONS, THRESHOLD
@app.cell
def _(COLLECTION, THRESHOLD):
import ranx
def create_qrels(questions):
qrels_dict = {}
for q in questions:
question = q["pregunta"]
source_ids = q["ids"]
qrels_dict[question] = {}
for id in source_ids:
qrels_dict[question][id] = 1
return ranx.Qrels(qrels_dict)
def create_run(questions):
run_dict = {}
for q in questions:
question = q["pregunta"]
embedding = ada.embed(question)
query_response = qdrant.client.query_points(
collection_name=COLLECTION,
query=embedding,
limit=100,
score_threshold=THRESHOLD,
)
run_dict[question] = {}
for point in query_response.points:
run_dict[question][point.id] = point.score
return ranx.Run(run_dict)
return create_qrels, create_run, ranx
@app.cell
def _(create_qrels, create_run, ranx):
def create_evals(questions, ks):
qrels = create_qrels(questions)
run = create_run(questions)
return [
ranx.evaluate(qrels, run, [f"precision@{k}", f"recall@{k}", f"ndcg@{k}"])
for k in ks
]
return (create_evals,)
@app.cell
def _():
import matplotlib.pyplot as plt
def plot_retrieval_metrics(results):
# Extract k values and metrics
k_values = [int(list(result.keys())[0].split("@")[1]) for result in results]
# Prepare data for plotting
precision_values = [
list(result.values())[0]
for result in results
if "precision" in list(result.keys())[0]
]
recall_values = [
list(result.values())[1]
for result in results
if "recall" in list(result.keys())[1]
]
ndcg_values = [
list(result.values())[2]
for result in results
if "ndcg" in list(result.keys())[2]
]
# Create a figure with three subplots
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
# Precision Plot
ax1.plot(k_values, precision_values, marker="o", linestyle="-", color="blue")
ax1.set_title("Precision @ K")
ax1.set_xlabel("Number of Retrieved Documents (K)")
ax1.set_ylabel("Precision")
ax1.set_xticks(k_values)
# Recall Plot
ax2.plot(k_values, recall_values, marker="o", linestyle="-", color="green")
ax2.set_title("Recall @ K")
ax2.set_xlabel("Number of Retrieved Documents (K)")
ax2.set_ylabel("Recall")
ax2.set_xticks(k_values)
# NDCG Plot
ax3.plot(k_values, ndcg_values, marker="o", linestyle="-", color="red")
ax3.set_title("NDCG @ K")
ax3.set_xlabel("Number of Retrieved Documents (K)")
ax3.set_ylabel("NDCG")
ax3.set_xticks(k_values)
# Add value labels
for ax, values in zip(
[ax1, ax2, ax3], [precision_values, recall_values, ndcg_values]
):
for i, v in enumerate(values):
ax.text(k_values[i], v, f"{v:.2f}", ha="center", va="bottom")
plt.tight_layout()
return plt.gca()
return (plot_retrieval_metrics,)
@app.cell
def _(QUESTIONS, create_evals, plot_retrieval_metrics):
results = create_evals(QUESTIONS, [1, 3, 5, 10, 20])
plot_retrieval_metrics(results)
return
if __name__ == "__main__":
app.run()

View File

@@ -0,0 +1,17 @@
[project]
name = "search-evaluator"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"azure-ada",
"marimo>=0.13.15",
"matplotlib>=3.10.3",
"qdrant",
"ranx>=0.3.20",
]
[tool.uv.sources]
azure-ada = { workspace = true }
qdrant = { workspace = true }

View File

@@ -0,0 +1,226 @@
import marimo
__generated_with = "0.13.15"
app = marimo.App(width="medium")
with app.setup:
import marimo as mo
import random
import json
import os
from banortegpt.generation.vertex_ai_gemini import Gemini
from banortegpt.vector.qdrant import Qdrant
gemini = Gemini.from_vault("banortegpt", token=os.getenv("VAULT_TOKEN"))
qdrant = Qdrant.from_vault("banortegpt", token=os.getenv("VAULT_TOKEN"))
collection_list = qdrant.list_collections()
question_type_map = {
"Factual": "Questions targeting specific details within a reference (e.g., a companys profit in a report, a verdict in a legal case, or symptoms in a medical record) to test RAGs retrieval accuracy.",
"Summarization": "Questions that require comprehensive answers, covering all relevant information, to mainly evaluate the recall rate of RAG retrieval.",
"Multi-hop Reasoning": "Questions involve logical relationships among events and details within adocument, forming a reasoning chain to assess RAGs logical reasoning ability.",
"Unanswerable": "Questions arise from potential information loss during the schema-to-article generation, where no corresponding information fragment exists, or the information is insufficient for an answer.",
}
question_types = list(question_type_map.keys())
FORMAT_TEMPLATE = """
<document>
<id>
{id}
</id>
<content>
{content}
</content>
</document>
"""
PROMPT_TEMPLATE = """
Eres un experto en generación de preguntas sínteticas. Tu tarea es crear preguntas sintéticas en español basadas en documentos de referencia proporcionados.
## INSTRUCCIONES:
### Requisitos obligatorios:
1. **Idioma**: La pregunta DEBE estar completamente en español
2. **Basada en documentos**: La pregunta DEBE poder responderse ÚNICAMENTE con la información contenida en los documentos proporcionados
3. **Tipo de pregunta**: Sigue estrictamente la definición del tipo de pregunta especificado
4. **Identificación de fuentes**: Incluye el ID de fuente de todos los documentos necesarios para responder la pregunta
5. **Respuesta ideal**: Incluye la respuesta perfecta basada en los documentos necesarios para responder la pregunta
### Tipo de pregunta solicitado:
**Tipo**: {qtype}
**Definición**: {qtype_def}
### Documentos de referencia:
{context}
Por favor, genera una pregunta siguiendo estas instrucciones.
""".strip()
response_schema = {
"type": "object",
"properties": {
"pregunta": {
"type": "string",
},
"respuesta": {
"type": "string",
},
"ids": {"type": "array", "items": {"type": "string"}},
},
"required": ["pregunta", "respuesta", "ids"],
}
@app.cell
def _():
mo.md(
r"""
# Generador de Preguntas Sintéticas
## Guía de Uso
1. **Selecciona una colección de vectores** y especifica el campo que contiene el texto del vector
2. **Elige un modelo LLM** para la generación de preguntas sintéticas
- Modelo por defecto: `gemini-2.0-flash`
3. **Selecciona el tipo** y cantidad de chunks por pregunta
4. **Define la cantidad** de preguntas sintéticas que deseas crear
5. **Ejecuta la generación** y revisa los resultados
"""
)
return
@app.cell
def _():
settings = (
mo.md(
"""
Collection: {collection} Key: {content_key}\n
LLM: {model}\n
Question type: {qtype} Chunks: {chunks}\n
Target amount: {amount}
"""
)
.batch(
model=mo.ui.text(value="gemini-2.0-flash"),
collection=mo.ui.dropdown(collection_list, searchable=True),
content_key=mo.ui.text(value="page_content"),
amount=mo.ui.number(value=10, step=10),
chunks=mo.ui.number(value=3, step=1),
qtype=mo.ui.dropdown(question_types),
)
.form(bordered=True)
)
settings
return (settings,)
@app.cell
def _(settings):
mo.stop(not settings.value)
CONTENT_KEY: str = settings.value["content_key"]
QUESTION_TYPE: str = settings.value["qtype"]
CHUNKS: int = settings.value["chunks"]
TYPE_DEFINITION: str = question_type_map[QUESTION_TYPE]
AMOUNT: int = settings.value["amount"]
gemini.set_model(settings.value["model"])
qdrant.collection = settings.value["collection"]
return AMOUNT, CHUNKS, CONTENT_KEY, QUESTION_TYPE, TYPE_DEFINITION
@app.function
def get_point_ids():
limit = qdrant.client.get_collection(qdrant.collection).points_count
query_response = qdrant.client.query_points(qdrant.collection, limit=limit)
return [point.id for point in query_response.points]
@app.cell
def _(CHUNKS: int, CONTENT_KEY: str):
def select_random_points(points: list):
selected_points = []
max = len(points) - 1
for _ in range(CHUNKS):
idx = random.randint(0, max)
selected_points.append(points[idx])
query_response = qdrant.client.retrieve(
qdrant.collection,
ids=selected_points,
)
data = [(point.id, point.payload[CONTENT_KEY]) for point in query_response]
return data
return (select_random_points,)
@app.function
def format_points_into_context(points):
templates = [FORMAT_TEMPLATE.format(id=p[0], content=p[1]) for p in points]
return "\n".join(templates)
@app.function
def generate_synthetic_questions(prompt):
response = gemini.generate(prompt, response_schema=response_schema)
return response
@app.cell
def _(QUESTION_TYPE: str, TYPE_DEFINITION: str, select_random_points):
def generate_questions(amount: int):
results = []
for _ in mo.status.progress_bar(range(amount), remove_on_exit=True):
point_ids = get_point_ids()
selected_points = select_random_points(point_ids)
context = format_points_into_context(selected_points)
prompt = PROMPT_TEMPLATE.format(
context=context, qtype=QUESTION_TYPE, qtype_def=TYPE_DEFINITION
)
questions = generate_synthetic_questions(prompt)
result = json.loads(questions.text)
result["type"] = QUESTION_TYPE
results.append(result)
return results
return (generate_questions,)
@app.cell
def _(AMOUNT: int, generate_questions):
results = generate_questions(AMOUNT)
return (results,)
@app.cell
def _(results):
import polars as pl
pl.from_records(results)
return
if __name__ == "__main__":
app.run()

View File

@@ -0,0 +1,20 @@
[project]
name = "synthetic-question-generator"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12"
dependencies = [
"hvac>=2.3.0",
"marimo>=0.13.15",
"polars>=1.30.0",
"qdrant",
"vertex-ai-gemini",
]
[tool.uv.sources]
qdrant = { workspace = true }
vertex-ai-gemini = { workspace = true }
[dependency-groups]
dev = []

View File

View File

@@ -0,0 +1,6 @@
def main():
print("Hello from vector-db-migrator!")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,7 @@
[project]
name = "vector-db-migrator"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12"
dependencies = []

View File

@@ -0,0 +1,127 @@
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "marimo",
# "numpy==2.1.0",
# "pymongo==4.11",
# "qdrant-client==1.11.0",
# "scikit-learn==1.6.1",
# "umap-learn==0.5.7",
# ]
# ///
import marimo
__generated_with = "0.11.0"
app = marimo.App(width="medium")
@app.cell
def _():
from qdrant_client import QdrantClient, models
from pymongo import MongoClient
return MongoClient, QdrantClient, models
@app.cell
def _(QdrantClient):
qdrant = QdrantClient(
api_key="g2nZn0AMxuBREAqfna1YlednbVO1D8wAG3KNrKbYghyrftgVTP0TIg",
location="https://82ba8a5d-26e6-41ff-a4f0-ac5e7554ef15.eastus-0.azure.cloud.qdrant.io:6333",
)
print(qdrant.get_collection("MayaOCP").points_count)
return (qdrant,)
@app.cell
def _(MongoClient):
mongo = MongoClient(
"mongodb+srv://banorte:innovacion2024.@mayacontigo-mongo.global.mongocluster.cosmos.azure.com/?tls=true&authMechanism=SCRAM-SHA-256&retrywrites=false&maxIdleTimeMS=120000"
)
print(mongo.admin.command("ping"))
return (mongo,)
@app.cell
def _(qdrant):
points = qdrant.scroll(
collection_name="MayaOCP", with_vectors=True, with_payload=True, limit=100000
)[0]
print(len(points))
return (points,)
@app.cell
def _(mongo):
mongodb = mongo["MayaContigo"]
collection = mongodb["MayaOCP"]
return collection, mongodb
@app.cell
def _(points):
documents = [{"vector": p.vector[:2000], **p.payload} for p in points]
documents[:2]
return (documents,)
@app.cell
def _(collection, documents):
collection.insert_many(documents)
return
@app.cell
def _(mongodb):
mongodb.command(
{
"createIndexes": "MayaOCP",
"indexes": [
{
"name": "VectorSearchIndex",
"key": {"vector": "cosmosSearch"},
"cosmosSearchOptions": {
"kind": "vector-hnsw",
"similarity": "COS",
"dimensions": 2000,
},
}
],
}
)
return
@app.cell
def _(points):
query_vector = points[0].vector
query_vector
return (query_vector,)
@app.cell
def _(collection, query_vector):
pipeline = [
{
"$search": {
"cosmosSearch": {
"path": "vector",
"vector": query_vector[:2000],
"k": 5,
}
}
}
]
for r in collection.aggregate(pipeline):
print(r)
return pipeline, r
@app.cell
def _():
return
if __name__ == "__main__":
app.run()