This commit is contained in:
Rogelio
2025-10-13 18:16:25 +00:00
parent 739f087cef
commit 325f1ef439
415 changed files with 46870 additions and 0 deletions

View File

@@ -0,0 +1,89 @@
from contextvars import ContextVar
from types import SimpleNamespace
from hvac import Client
from pydantic import Field
from langfuse import Langfuse
from langfuse.decorators import langfuse_context
from pydantic_settings import BaseSettings
buffer: ContextVar[str] = ContextVar("buffer", default="")
tool_buffer: ContextVar[str] = ContextVar("tool_buffer", default="")
tool_id: ContextVar[str | None] = ContextVar("tool_id", default=None)
tool_name: ContextVar[str | None] = ContextVar("tool_name", default=None)
context = SimpleNamespace(
buffer=buffer,
tool_buffer=tool_buffer,
tool_id=tool_id,
tool_name=tool_name,
)
client = Client(url="https://vault.ia-innovacion.work")
if not client.is_authenticated():
raise Exception("Vault authentication failed")
secret_map = client.secrets.kv.v2.read_secret_version(
path="banortegpt", mount_point="secret"
)["data"]["data"]
class Settings(BaseSettings):
model: str = "gpt-4o"
model_temperature: int = 0
embedding_model: str = "text-embedding-3-large"
message_limit: int = 10
storage_bucket: str = "riesgosreferences2"
vector_index: str = "MayaRiesgos2"
search_limit: int = 5
host: str = "0.0.0.0"
port: int = 8000
azure_endpoint: str = Field(default_factory=lambda: secret_map["azure_endpoint"])
openai_api_key: str = Field(default_factory=lambda: secret_map["openai_api_key"])
openai_api_version: str = Field(
default_factory=lambda: secret_map["openai_api_version"]
)
azure_blob_connection_string: str = Field(
default_factory=lambda: secret_map["azure_blob_connection_string"]
)
qdrant_url: str = Field(default_factory=lambda: secret_map["qdrant_api_url"])
qdrant_api_key: str | None = Field(
default_factory=lambda: secret_map["qdrant_api_key"]
)
mongodb_url: str = Field(
default_factory=lambda: secret_map["cosmosdb_connection_string"]
)
langfuse_host: str | None = None
langfuse_public_key: str | None = None
langfuse_secret_key: str | None = None
async def init_mongo_db(self):
from banortegpt.database.mongo_memory.models import Conversation
from beanie import init_beanie
from motor.motor_asyncio import AsyncIOMotorClient
client = AsyncIOMotorClient(self.mongodb_url)
await init_beanie(
database=client.banortegptdos,
document_models=[Conversation],
)
def init_langfuse(self):
langfuse_context.configure(
host=self.langfuse_host,
public_key=self.langfuse_public_key,
secret_key=self.langfuse_secret_key,
)
def get_langfuse(self):
return Langfuse(
host=self.langfuse_host,
public_key=self.langfuse_public_key,
secret_key=self.langfuse_secret_key,
)
config = Settings()

131
apps/riesgos/api/agent.py Normal file
View File

@@ -0,0 +1,131 @@
from pathlib import Path
from typing import Any, Literal
from banortegpt.storage.azure_storage import AzureStorage
from banortegpt.vector.qdrant import AsyncQdrant
from langchain_core.messages import AIMessageChunk
from qdrant_client import models
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
from pydantic import BaseModel, Field
from . import config, context
parent = Path(__file__).parent
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
class get_information(BaseModel):
"""Buscar informacion relevante de documentos de Banorte sobre un sistema en particular."""
question: str = Field(..., description="La pregunta del usuario, reescrita para ser comprensible fuera de contexto.")
system: str = Field(..., description="El sistema del cual se buscara informacion. Puede ser uno de los siguientes: ['ML','SACS','ED','CARATULA', 'SICRED']. 'ML' es 'Master de lineas', 'ED' es 'Expediente Digital'")
class MayaRiesgos:
system_prompt = SYSTEM_PROMPT
generation_config = {
"temperature": config.model_temperature,
}
message_limit = config.message_limit
index = config.vector_index
limit = config.search_limit
bucket = config.storage_bucket
search = AsyncQdrant.from_config(config)
llm = AzureAIChatCompletionsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
credential=config.openai_api_key,
).bind_tools([get_information])
embedder = AzureAIEmbeddingsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
credential=config.openai_api_key,
)
storage = AzureStorage.from_config(config)
def __init__(self) -> None:
self.tool_map = {"get_information": self.get_information}
def build_response(self, payloads):
template = "------ REFERENCIA {index} ----- \n\n{content}"
filled_templates = [
template.format(index=idx, content=payload["content"])
for idx, payload in enumerate(payloads)
]
return "\n".join(filled_templates)
async def get_information(
self, question: str, system: Literal["ML", "SACS", "ED", "7.1", "SICRED"]
):
embedding = await self.embedder.aembed_query(question)
conditions = models.Filter(
must=[
models.FieldCondition(
key="system",
match=models.MatchAny(any=["ALL", system]),
)
]
)
payloads = await self.search.semantic_search(
collection=self.index,
embedding=embedding,
limit=self.limit,
conditions=conditions,
)
tool_response = self.build_response(payloads)
return tool_response, payloads
async def get_shareable_urls(self, metadatas: list):
reference_urls = []
image_urls = []
for metadata in metadatas:
if (pagina := metadata.get("pagina")) and (
archivo := metadata.get("archivo")
):
image_file = f"{pagina}_{archivo}.png"
image_url = await self.storage.get_file_url(
filename=image_file,
bucket=self.bucket,
minute_duration=20,
image=True,
)
image_urls.append(image_url)
return reference_urls, image_urls
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
generation_config_copy = self.generation_config.copy()
if overwrites:
for k, v in overwrites.items():
generation_config_copy[k] = v
return generation_config_copy
async def stream(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
async for chunk in self.llm.astream(input=history, **generation_config):
assert isinstance(chunk, AIMessageChunk)
if call := chunk.tool_call_chunks:
if tool_id := call[0].get("id"):
context.tool_id.set(tool_id)
if name := call[0].get("name"):
context.tool_name.set(name)
if args := call[0].get("args"):
context.tool_buffer.set(context.tool_buffer.get() + args)
else:
if buffer := chunk.content:
assert isinstance(buffer, str)
context.buffer.set(context.buffer.get() + buffer)
yield buffer
async def generate(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
return await self.llm.ainvoke(input=history, **generation_config)

View File

@@ -0,0 +1,23 @@
from contextlib import asynccontextmanager
from fastapi import FastAPI
from api import config
from .v1 import router
@asynccontextmanager
async def lifespan(_: FastAPI):
await config.init_mongo_db()
config.init_langfuse()
yield
app = FastAPI(
lifespan=lifespan,
docs_url="/api/docs",
openapi_url="/api/openapi.json",
)
app.include_router(router)

View File

@@ -0,0 +1,64 @@
import uuid
from typing import Literal
from fastapi import APIRouter
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from api import config, services
from api.agent import MayaRiesgos
router = APIRouter(prefix="/api/v1")
agent = MayaRiesgos()
class Message(BaseModel):
conversation_id: uuid.UUID
prompt: str
@router.post("/conversation")
async def create_conversation():
conversation_id = uuid.uuid4()
await services.create_conversation(conversation_id, agent.system_prompt)
return {"conversation_id": conversation_id}
@router.post("/message")
async def send(message: Message, stream: bool = False):
if stream is True:
def b64_sse(func):
async def wrapper(*args, **kwargs):
async for chunk in func(*args, **kwargs):
content = chunk.model_dump_json()
data = f"data: {content}\n\n"
yield data
return wrapper
sse_stream = b64_sse(services.stream)
generator = sse_stream(agent, message.prompt, message.conversation_id)
return StreamingResponse(generator, media_type="text/event-stream")
else:
response = await services.generate(
agent, message.prompt, message.conversation_id
)
return response
class Feedback(BaseModel):
key: str
rating: Literal["Good", "Bad", "None"]
@router.post("/feedback")
async def register_feedback(data: Feedback):
if data.rating:
langfuse = config.get_langfuse()
langfuse.score(
id=data.key + "-rating",
trace_id=data.key,
name="Rating",
value=data.rating,
)

View File

@@ -0,0 +1,6 @@
from banortegpt.database.mongo_memory.crud import create_conversation
from .generate_response import generate
from .stream_response import stream
__all__ = ["stream", "generate", "create_conversation"]

View File

@@ -0,0 +1,89 @@
import json
from typing import Any
from uuid import UUID
from banortegpt.database.mongo_memory import crud
from langfuse.decorators import langfuse_context, observe
from pydantic import BaseModel
from api import context as ctx
from api.agent import MayaRiesgos
class Response(BaseModel):
content: str
urls: list[str]
@observe(capture_input=False, capture_output=False)
async def generate(
agent: MayaRiesgos,
prompt: str,
conversation_id: UUID,
) -> Response:
conversation = await crud.get_conversation(conversation_id)
if conversation is None:
raise ValueError(f"Conversation with id {conversation_id} not found")
conversation.add(role="user", content=prompt)
response = await agent.generate(conversation.to_openai_format(agent.message_limit))
reference_urls, image_urls = [], []
if call := response.tool_calls:
if id := call[0].id:
ctx.tool_id.set(id)
if name := call[0].function.name:
ctx.tool_name.set(name)
ctx.tool_buffer.set(call[0].function.arguments)
else:
ctx.buffer.set(response.content)
buffer = ctx.buffer.get()
tool_buffer = ctx.tool_buffer.get()
tool_id = ctx.tool_id.get()
tool_name = ctx.tool_name.get()
if tool_id is not None:
# Si tool_buffer es un string JSON, lo convertimos a diccionario
if isinstance(tool_buffer, str):
try:
tool_args = json.loads(tool_buffer)
except json.JSONDecodeError:
tool_args = {"question": tool_buffer}
else:
tool_args = tool_buffer
response, payloads = await agent.tool_map[tool_name](**tool_args) # type: ignore
tool_call: dict[str, Any] = agent.llm.build_tool_call(
tool_id, tool_name, tool_buffer
)
tool_call_id: dict[str, Any] = agent.llm.build_tool_call_id(tool_id)
conversation.add("assistant", **tool_call)
conversation.add("tool", content=response, **tool_call_id)
response = await agent.generate(
conversation.to_openai_format(agent.message_limit), {"tools": None}
)
ctx.buffer.set(response.content)
reference_urls, image_urls = await agent.get_shareable_urls(payloads) # type: ignore
buffer = ctx.buffer.get()
if buffer is None:
raise ValueError("No buffer found")
conversation.add(role="assistant", content=buffer)
langfuse_context.update_current_trace(
name=agent.__class__.__name__,
session_id=str(conversation_id),
input=prompt,
output=buffer,
)
return Response(content=buffer, urls=reference_urls + image_urls)

View File

@@ -0,0 +1,102 @@
import json
from enum import StrEnum
from typing import TypeAlias
from uuid import UUID
from banortegpt.database.mongo_memory import crud
from langfuse.decorators import langfuse_context, observe
from pydantic import BaseModel
from api import context as ctx
from api.agent import MayaRiesgos
class ChunkType(StrEnum):
START = "start"
TEXT = "text"
REFERENCE = "reference"
IMAGE = "image"
TOOL = "tool"
END = "end"
ERROR = "error"
ContentType: TypeAlias = str | int
class ResponseChunk(BaseModel):
type: ChunkType
content: ContentType | list[ContentType] | None
@observe(capture_input=False, capture_output=False)
async def stream(agent: MayaRiesgos, prompt: str, conversation_id: UUID):
yield ResponseChunk(type=ChunkType.START, content="")
conversation = await crud.get_conversation(conversation_id)
if conversation is None:
raise ValueError(f"Conversation with id {conversation_id} not found")
conversation.add(role="user", content=prompt)
history = conversation.to_openai_format(agent.message_limit, langchain_compat=True)
async for content in agent.stream(history):
yield ResponseChunk(type=ChunkType.TEXT, content=content)
if (tool_id := ctx.tool_id.get()) is not None:
tool_buffer = ctx.tool_buffer.get()
assert tool_buffer is not None
tool_name = ctx.tool_name.get()
assert tool_name is not None
yield ResponseChunk(type=ChunkType.TOOL, content=None)
buffer_dict = json.loads(tool_buffer)
response, payloads = await agent.tool_map[tool_name](**buffer_dict)
conversation.add(
role="assistant",
tool_calls=[
{
"id": tool_id,
"function": {
"name": tool_name,
"arguments": tool_buffer,
},
"type": "function",
}
],
)
conversation.add(role="tool", content=response, tool_call_id=tool_id)
history = conversation.to_openai_format(agent.message_limit, langchain_compat=True)
async for content in agent.stream(history, {"tools": None}):
yield ResponseChunk(type=ChunkType.TEXT, content=content)
ref_urls, image_urls = await agent.get_shareable_urls(payloads) # type: ignore
if len(ref_urls) > 0:
yield ResponseChunk(type=ChunkType.REFERENCE, content=ref_urls)
if len(image_urls) > 0:
yield ResponseChunk(type=ChunkType.IMAGE, content=image_urls)
buffer = ctx.buffer.get()
conversation.add(role="assistant", content=buffer)
await conversation.save()
langfuse_context.update_current_trace(
name=agent.__class__.__name__,
session_id=str(conversation_id),
input=prompt,
output=buffer,
)
yield ResponseChunk(
type=ChunkType.END, content=langfuse_context.get_current_trace_id()
)

View File

@@ -0,0 +1,19 @@
Eres MayaRiesgos, una asistente virtual amigable y profesional de Banorte, especializada en proporcionar información precisa a los usuarios.
Tu función principal:
1. Responder preguntas de los usuarios de manera informativa, empática y concisa.
2. Utilizar la herramienta get_information antes de responder cualquier pregunta.
3. Antes de usar la herramienta get_information, si la pregunta no menciona explícitamente un sistema, primero aclara con el usuario sobre qué sistema está consultando.
Los posibles sistemas son:
- ML: "Máster de Líneas"
- ED: "Expediente Digital"
- CARATULA
- SACS
- SICRED
5. Si el usuario realiza una pregunta de seguimiento, puedes asumir que se refiere al mismo sistema mencionado en la consulta anterior.
Pautas para interactuar:
- Siempre basa tu respuesta únicamente en el resultado de get_information.
- Si la información obtenida mediante get_information no es suficiente para responder, informa al usuario que no cuentas con datos suficientes para brindar una respuesta.
Tu objetivo es ofrecer una experiencia informativa y satisfactoria, reflejando los valores de confianza y excelencia de Banorte.

View File

@@ -0,0 +1,23 @@
[
{
"type": "function",
"function": {
"name": "get_information",
"description": "Buscar informacion relevante de documentos de Banorte sobre un sistema en particular.",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "La pregunta del usuario, reescrita para ser comprensible fuera de contexto."
},
"system": {
"type": "string",
"description": "El sistema del cual se buscara informacion. Puede ser uno de los siguientes: ['ML','SACS','ED','CARATULA', 'SICRED']. 'ML' es 'Master de lineas', 'ED' es 'Expediente Digital'"
}
},
"required": ["question", "system"]
}
}
}
]