This commit is contained in:
Rogelio
2025-10-13 18:16:25 +00:00
parent 739f087cef
commit 325f1ef439
415 changed files with 46870 additions and 0 deletions

130
apps/ocp/api/agent/main.py Normal file
View File

@@ -0,0 +1,130 @@
import logging
from pathlib import Path
from typing import Any
from langchain_core.messages.ai import AIMessageChunk
from pydantic import BaseModel, Field
from banortegpt.storage.azure_storage import AzureStorage
from banortegpt.vector.qdrant import AsyncQdrant
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
import api.context as ctx
from api.config import config
logger = logging.getLogger(__name__)
parent = Path(__file__).parent
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
class get_information(BaseModel):
"""Search a private repository for information."""
question: str = Field(..., description="The user question")
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
class MayaOCP:
system_prompt = SYSTEM_PROMPT
generation_config = {
"temperature": config.model_temperature,
}
message_limit = config.message_limit
index = config.vector_index
limit = config.search_limit
bucket = config.storage_bucket
search = AsyncQdrant.from_config(config)
llm = AzureAIChatCompletionsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
credential=config.openai_api_key,
).bind_tools([get_information])
embedder = AzureAIEmbeddingsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
credential=config.openai_api_key,
)
storage = AzureStorage.from_config(config)
def __init__(self) -> None:
self.tool_map = {"get_information": self.get_information}
def build_response(self, payloads):
preface = ["Recuerda citar las referencias en el formato: texto[1]."]
template = "------ REFERENCIA {index} ----- \n\n{content}"
filled_templates = [
template.format(index=idx, content=payload.get("content", ""))
for idx, payload in enumerate(payloads)
]
return "\n".join(preface + filled_templates)
async def get_information(self, question: str):
logger.info(
f"Embedding question: {question} with model {self.embedder.model_name}"
)
embedding = await self.embedder.aembed_query(question)
results = await self.search.semantic_search(
embedding=embedding, collection=self.index, limit=self.limit
)
tool_response = self.build_response(results)
return tool_response, results
async def get_shareable_urls(self, metadatas: list):
reference_urls = []
image_urls = []
for metadata in metadatas:
if file := metadata.get("file"):
reference_url = await self.storage.get_file_url(
filename=file,
bucket=self.bucket,
minute_duration=20,
image=False,
)
reference_urls.append(reference_url)
if image_file := metadata.get("image"):
image_url = await self.storage.get_file_url(
filename=image_file,
bucket=self.bucket,
minute_duration=20,
image=True,
)
image_urls.append(image_url)
return reference_urls, image_urls
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
generation_config_copy = self.generation_config.copy()
if overwrites:
for k, v in overwrites.items():
generation_config_copy[k] = v
return generation_config_copy
async def stream(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
async for chunk in self.llm.astream(input=history, **generation_config):
assert isinstance(chunk, AIMessageChunk)
if call := chunk.tool_call_chunks:
if tool_id := call[0].get("id"):
ctx.tool_id.set(tool_id)
if name := call[0].get("name"):
ctx.tool_name.set(name)
if args := call[0].get("args"):
ctx.tool_buffer.set(ctx.tool_buffer.get() + args)
else:
if buffer := chunk.content:
assert isinstance(buffer, str)
ctx.buffer.set(ctx.buffer.get() + buffer)
yield buffer
async def generate(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
return await self.llm.ainvoke(input=history, **generation_config)