This commit is contained in:
Rogelio
2025-10-13 18:16:25 +00:00
parent 739f087cef
commit 325f1ef439
415 changed files with 46870 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
from .main import MayaBursatil
__all__ = ["MayaBursatil"]

View File

@@ -0,0 +1,130 @@
from pathlib import Path
from typing import Any
from langchain_core.messages import AIMessageChunk
from pydantic import BaseModel, Field
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
from banortegpt.storage.azure_storage import AzureStorage
from banortegpt.vector.qdrant import AsyncQdrant
from api import context
from api.config import config
parent = Path(__file__).parent
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
class get_information(BaseModel):
"""Search a private repository for information."""
question: str = Field(..., description="The user question")
class MayaBursatil:
system_prompt = SYSTEM_PROMPT
generation_config = {
"temperature": config.model_temperature,
}
embedding_model = config.embedding_model
message_limit = config.message_limit
index = config.vector_index
limit = config.search_limit
bucket = config.storage_bucket
search = AsyncQdrant.from_config(config)
llm = AzureAIChatCompletionsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
credential=config.openai_api_key,
).bind_tools([get_information])
embedder = AzureAIEmbeddingsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
credential=config.openai_api_key,
)
storage = AzureStorage.from_config(config)
def __init__(self) -> None:
self.tool_map = {
"get_information": self.get_information
}
def build_response(self, payloads, fallback):
template = "<FAQ {index}>\n\n{content}\n\n</FAQ {index}>"
filled_templates = [
template.format(index=idx, content=payload["content"])
for idx, payload in enumerate(payloads)
]
filled_templates.append(f"<FALLBACK>\n{fallback}\n</FALLBACK>")
return "\n".join(filled_templates)
async def get_information(self, question: str):
embedding = await self.embedder.aembed_query(question)
payloads = await self.search.semantic_search(embedding=embedding, collection=self.index, limit=self.limit)
fallback_messages: dict[str, int] = {}
for payload in payloads:
fallback_message = payload.get("fallback_message", "None")
if fallback_message not in fallback_messages:
fallback_messages[fallback_message] = 1
else:
fallback_messages[fallback_message] += 1
fallback = max(fallback_messages, key=fallback_messages.get) # type: ignore
tool_response = self.build_response(payloads, fallback)
return tool_response, payloads
async def get_shareable_urls(self, payloads: list):
reference_urls = []
image_urls = []
for payload in payloads:
if imagen := payload.get("imagen"):
image_url = await self.storage.get_file_url(
filename=imagen,
bucket=self.bucket,
minute_duration=20,
image=True,
)
if image_url:
image_urls.append(image_url)
else:
print("Image not found")
return reference_urls, image_urls
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
generation_config_copy = self.generation_config.copy()
if overwrites:
for k, v in overwrites.items():
generation_config_copy[k] = v
return generation_config_copy
async def stream(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
async for delta in self.llm.astream(input=history, **generation_config):
assert isinstance(delta, AIMessageChunk)
if call := delta.tool_call_chunks:
if tool_id := call[0].get("id"):
context.tool_id.set(tool_id)
if name := call[0].get("name"):
context.tool_name.set(name)
if args := call[0].get("args"):
context.tool_buffer.set(context.tool_buffer.get() + args)
else:
if buffer := delta.content:
assert isinstance(buffer, str)
context.buffer.set(context.buffer.get() + buffer)
yield buffer
async def generate(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
return await self.llm.ainvoke(input=history, **generation_config)

View File

@@ -0,0 +1,6 @@
Eres MayaBursatil, una muy amigable y símpatica asistente virtual del departamento de contraloria bursatil de Banorte.
Tu objetivo es responder preguntas de usuarios de manera informativa y empatica.
Para cada pregunta, utiliza la herramienta 'get_information' para obtener informacion de nuestro FAQ.
Utiliza la informacion para responder la pregunta del usuario.
Utiliza emojis.
Si no puedes responder la pregunta basado en la informacion del FAQ, responde con el contenido en el FALLBACK.