forked from innovacion/Mayacontigo
ic
This commit is contained in:
3
apps/bursatil/api/agent/__init__.py
Normal file
3
apps/bursatil/api/agent/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .main import MayaBursatil
|
||||
|
||||
__all__ = ["MayaBursatil"]
|
||||
130
apps/bursatil/api/agent/main.py
Normal file
130
apps/bursatil/api/agent/main.py
Normal file
@@ -0,0 +1,130 @@
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from pydantic import BaseModel, Field
|
||||
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
|
||||
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
|
||||
from banortegpt.storage.azure_storage import AzureStorage
|
||||
from banortegpt.vector.qdrant import AsyncQdrant
|
||||
|
||||
from api import context
|
||||
from api.config import config
|
||||
|
||||
parent = Path(__file__).parent
|
||||
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
|
||||
|
||||
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
|
||||
|
||||
class get_information(BaseModel):
|
||||
"""Search a private repository for information."""
|
||||
|
||||
question: str = Field(..., description="The user question")
|
||||
|
||||
class MayaBursatil:
|
||||
system_prompt = SYSTEM_PROMPT
|
||||
generation_config = {
|
||||
"temperature": config.model_temperature,
|
||||
}
|
||||
embedding_model = config.embedding_model
|
||||
message_limit = config.message_limit
|
||||
index = config.vector_index
|
||||
limit = config.search_limit
|
||||
bucket = config.storage_bucket
|
||||
|
||||
search = AsyncQdrant.from_config(config)
|
||||
llm = AzureAIChatCompletionsModel(
|
||||
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
|
||||
credential=config.openai_api_key,
|
||||
).bind_tools([get_information])
|
||||
embedder = AzureAIEmbeddingsModel(
|
||||
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
|
||||
credential=config.openai_api_key,
|
||||
)
|
||||
storage = AzureStorage.from_config(config)
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.tool_map = {
|
||||
"get_information": self.get_information
|
||||
}
|
||||
|
||||
def build_response(self, payloads, fallback):
|
||||
template = "<FAQ {index}>\n\n{content}\n\n</FAQ {index}>"
|
||||
|
||||
filled_templates = [
|
||||
template.format(index=idx, content=payload["content"])
|
||||
for idx, payload in enumerate(payloads)
|
||||
]
|
||||
|
||||
filled_templates.append(f"<FALLBACK>\n{fallback}\n</FALLBACK>")
|
||||
|
||||
return "\n".join(filled_templates)
|
||||
|
||||
async def get_information(self, question: str):
|
||||
embedding = await self.embedder.aembed_query(question)
|
||||
|
||||
payloads = await self.search.semantic_search(embedding=embedding, collection=self.index, limit=self.limit)
|
||||
|
||||
fallback_messages: dict[str, int] = {}
|
||||
|
||||
for payload in payloads:
|
||||
fallback_message = payload.get("fallback_message", "None")
|
||||
if fallback_message not in fallback_messages:
|
||||
fallback_messages[fallback_message] = 1
|
||||
else:
|
||||
fallback_messages[fallback_message] += 1
|
||||
|
||||
fallback = max(fallback_messages, key=fallback_messages.get) # type: ignore
|
||||
|
||||
tool_response = self.build_response(payloads, fallback)
|
||||
|
||||
return tool_response, payloads
|
||||
|
||||
async def get_shareable_urls(self, payloads: list):
|
||||
reference_urls = []
|
||||
image_urls = []
|
||||
|
||||
for payload in payloads:
|
||||
if imagen := payload.get("imagen"):
|
||||
image_url = await self.storage.get_file_url(
|
||||
filename=imagen,
|
||||
bucket=self.bucket,
|
||||
minute_duration=20,
|
||||
image=True,
|
||||
)
|
||||
|
||||
if image_url:
|
||||
image_urls.append(image_url)
|
||||
else:
|
||||
print("Image not found")
|
||||
|
||||
return reference_urls, image_urls
|
||||
|
||||
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
|
||||
generation_config_copy = self.generation_config.copy()
|
||||
if overwrites:
|
||||
for k, v in overwrites.items():
|
||||
generation_config_copy[k] = v
|
||||
return generation_config_copy
|
||||
|
||||
async def stream(self, history, overwrites: dict | None = None):
|
||||
generation_config = self._generation_config_overwrite(overwrites)
|
||||
|
||||
async for delta in self.llm.astream(input=history, **generation_config):
|
||||
assert isinstance(delta, AIMessageChunk)
|
||||
if call := delta.tool_call_chunks:
|
||||
if tool_id := call[0].get("id"):
|
||||
context.tool_id.set(tool_id)
|
||||
if name := call[0].get("name"):
|
||||
context.tool_name.set(name)
|
||||
if args := call[0].get("args"):
|
||||
context.tool_buffer.set(context.tool_buffer.get() + args)
|
||||
else:
|
||||
if buffer := delta.content:
|
||||
assert isinstance(buffer, str)
|
||||
context.buffer.set(context.buffer.get() + buffer)
|
||||
yield buffer
|
||||
|
||||
async def generate(self, history, overwrites: dict | None = None):
|
||||
generation_config = self._generation_config_overwrite(overwrites)
|
||||
return await self.llm.ainvoke(input=history, **generation_config)
|
||||
6
apps/bursatil/api/agent/system_prompt.md
Normal file
6
apps/bursatil/api/agent/system_prompt.md
Normal file
@@ -0,0 +1,6 @@
|
||||
Eres MayaBursatil, una muy amigable y símpatica asistente virtual del departamento de contraloria bursatil de Banorte.
|
||||
Tu objetivo es responder preguntas de usuarios de manera informativa y empatica.
|
||||
Para cada pregunta, utiliza la herramienta 'get_information' para obtener informacion de nuestro FAQ.
|
||||
Utiliza la informacion para responder la pregunta del usuario.
|
||||
Utiliza emojis.
|
||||
Si no puedes responder la pregunta basado en la informacion del FAQ, responde con el contenido en el FALLBACK.
|
||||
Reference in New Issue
Block a user