forked from innovacion/Mayacontigo
ic
This commit is contained in:
108
apps/ChatEgresos/api/agent/main.py
Normal file
108
apps/ChatEgresos/api/agent/main.py
Normal file
@@ -0,0 +1,108 @@
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from langchain_core.messages import AIMessageChunk
|
||||
from pydantic import BaseModel, Field
|
||||
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
|
||||
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
|
||||
|
||||
from banortegpt.vector.qdrant import AsyncQdrant
|
||||
|
||||
from api import context
|
||||
from api.config import config
|
||||
|
||||
parent = Path(__file__).parent
|
||||
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
|
||||
|
||||
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
|
||||
|
||||
class get_information(BaseModel):
|
||||
"""Search a private repository for information."""
|
||||
|
||||
question: str = Field(..., description="The user question")
|
||||
|
||||
class Agent:
|
||||
system_prompt = SYSTEM_PROMPT
|
||||
generation_config = {
|
||||
"temperature": config.model_temperature,
|
||||
}
|
||||
embedding_model = config.embedding_model
|
||||
message_limit = config.message_limit
|
||||
index = config.vector_index
|
||||
limit = config.search_limit
|
||||
|
||||
search = AsyncQdrant.from_config(config)
|
||||
llm = AzureAIChatCompletionsModel(
|
||||
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
|
||||
credential=config.openai_api_key,
|
||||
).bind_tools([get_information])
|
||||
embedder = AzureAIEmbeddingsModel(
|
||||
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
|
||||
credential=config.openai_api_key,
|
||||
)
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.tool_map = {
|
||||
"get_information": self.get_information
|
||||
}
|
||||
|
||||
def build_response(self, payloads, fallback):
|
||||
template = "<FAQ {index}>\n\n{content}\n\n</FAQ {index}>"
|
||||
|
||||
filled_templates = [
|
||||
template.format(index=idx, content=payload["content"])
|
||||
for idx, payload in enumerate(payloads)
|
||||
]
|
||||
filled_templates.append(f"<FALLBACK>\n{fallback}\n</FALLBACK>")
|
||||
|
||||
return "\n".join(filled_templates)
|
||||
|
||||
async def get_information(self, question: str):
|
||||
embedding = await self.embedder.aembed_query(question)
|
||||
|
||||
payloads = await self.search.semantic_search(
|
||||
embedding=embedding,
|
||||
collection=self.index,
|
||||
limit=self.limit,
|
||||
)
|
||||
|
||||
fallback_messages = {}
|
||||
images = []
|
||||
for idx, payload in enumerate(payloads):
|
||||
fallback_message = payload.get("fallback_message", "None")
|
||||
fallback_messages[fallback_message] = fallback_messages.get(fallback_message, 0) + 1
|
||||
|
||||
# Solo extraer imágenes del primer payload
|
||||
if idx == 0 and "images" in payload:
|
||||
images.extend(payload["images"])
|
||||
|
||||
fallback = max(fallback_messages, key=fallback_messages.get) # type: ignore
|
||||
|
||||
response = self.build_response(payloads, fallback)
|
||||
return str(response), images[:3] # Limitar a 3 imágenes máximo
|
||||
|
||||
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
|
||||
if not overwrites:
|
||||
return self.generation_config.copy()
|
||||
return {**self.generation_config, **overwrites}
|
||||
|
||||
async def stream(self, history, overwrites: dict | None = None):
|
||||
generation_config = self._generation_config_overwrite(overwrites)
|
||||
|
||||
async for delta in self.llm.astream(input=history, **generation_config):
|
||||
assert isinstance(delta, AIMessageChunk)
|
||||
if call := delta.tool_call_chunks:
|
||||
if tool_id := call[0].get("id"):
|
||||
context.tool_id.set(tool_id)
|
||||
if name := call[0].get("name"):
|
||||
context.tool_name.set(name)
|
||||
if args := call[0].get("args"):
|
||||
context.tool_buffer.set(context.tool_buffer.get() + args)
|
||||
elif delta.content:
|
||||
assert isinstance(delta.content, str)
|
||||
context.buffer.set(context.buffer.get() + delta.content)
|
||||
yield delta.content
|
||||
|
||||
async def generate(self, history, overwrites: dict | None = None):
|
||||
generation_config = self._generation_config_overwrite(overwrites)
|
||||
return await self.llm.ainvoke(input=history, **generation_config)
|
||||
Reference in New Issue
Block a user