This commit is contained in:
Rogelio
2025-10-13 18:16:25 +00:00
parent 739f087cef
commit 325f1ef439
415 changed files with 46870 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
module.exports = {
root: true,
env: { browser: true, es2020: true },
extends: [
'eslint:recommended',
'plugin:@typescript-eslint/recommended',
'plugin:react-hooks/recommended',
],
ignorePatterns: ['dist', '.eslintrc.cjs'],
parser: '@typescript-eslint/parser',
plugins: ['react-refresh'],
rules: {
'react-refresh/only-export-components': [
'warn',
{ allowConstantExport: true },
],
},
}

View File

View File

@@ -0,0 +1,3 @@
from .main import Agent
__all__ = ["Agent"]

View File

@@ -0,0 +1,108 @@
from pathlib import Path
from typing import Any
from langchain_core.messages import AIMessageChunk
from pydantic import BaseModel, Field
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
from banortegpt.vector.qdrant import AsyncQdrant
from api import context
from api.config import config
parent = Path(__file__).parent
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
class get_information(BaseModel):
"""Search a private repository for information."""
question: str = Field(..., description="The user question")
class Agent:
system_prompt = SYSTEM_PROMPT
generation_config = {
"temperature": config.model_temperature,
}
embedding_model = config.embedding_model
message_limit = config.message_limit
index = config.vector_index
limit = config.search_limit
search = AsyncQdrant.from_config(config)
llm = AzureAIChatCompletionsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
credential=config.openai_api_key,
).bind_tools([get_information])
embedder = AzureAIEmbeddingsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
credential=config.openai_api_key,
)
def __init__(self) -> None:
self.tool_map = {
"get_information": self.get_information
}
def build_response(self, payloads, fallback):
template = "<FAQ {index}>\n\n{content}\n\n</FAQ {index}>"
filled_templates = [
template.format(index=idx, content=payload["content"])
for idx, payload in enumerate(payloads)
]
filled_templates.append(f"<FALLBACK>\n{fallback}\n</FALLBACK>")
return "\n".join(filled_templates)
async def get_information(self, question: str):
embedding = await self.embedder.aembed_query(question)
payloads = await self.search.semantic_search(
embedding=embedding,
collection=self.index,
limit=self.limit,
)
fallback_messages = {}
images = []
for idx, payload in enumerate(payloads):
fallback_message = payload.get("fallback_message", "None")
fallback_messages[fallback_message] = fallback_messages.get(fallback_message, 0) + 1
# Solo extraer imágenes del primer payload
if idx == 0 and "images" in payload:
images.extend(payload["images"])
fallback = max(fallback_messages, key=fallback_messages.get) # type: ignore
response = self.build_response(payloads, fallback)
return str(response), images[:3] # Limitar a 3 imágenes máximo
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
if not overwrites:
return self.generation_config.copy()
return {**self.generation_config, **overwrites}
async def stream(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
async for delta in self.llm.astream(input=history, **generation_config):
assert isinstance(delta, AIMessageChunk)
if call := delta.tool_call_chunks:
if tool_id := call[0].get("id"):
context.tool_id.set(tool_id)
if name := call[0].get("name"):
context.tool_name.set(name)
if args := call[0].get("args"):
context.tool_buffer.set(context.tool_buffer.get() + args)
elif delta.content:
assert isinstance(delta.content, str)
context.buffer.set(context.buffer.get() + delta.content)
yield delta.content
async def generate(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
return await self.llm.ainvoke(input=history, **generation_config)

View File

@@ -0,0 +1,49 @@
🧠 Asistente Experto en la Política de Gastos de Viaje — Banorte
🎯 Rol del Asistente:
Especialista normativo encargado de responder exclusivamente con base en la Política Oficial de Gastos de Viaje de Banorte, garantizando respuestas profesionales, claras y verificables.
✅ Misión Principal:
Brindar respuestas 100% alineadas con la política vigente de gastos de viaje de Banorte, cumpliendo con los siguientes principios:
⚙️ Reglas de Respuesta (Obligatorias):
📥 Consulta siempre con get_information:
Toda respuesta debe obtenerse únicamente a través de la herramienta get_information(question), que consulta la base de datos vectorial autorizada.
Esta herramienta tambien cuenta con la constancia de sitaicion fiscal de banorte en un url
No es obligatorio que el usuario especifique estrictamente su puesto para realizar la consulta.
Si el usuario sí indica un puesto, la respuesta debe forzarse a ese puesto y aplicarse la información correspondiente.
En caso de que no exista información para el puesto indicado, se debe responder con la respuesta general disponible en la base de conocimiento.
❗ Nunca inventar ni responder sin antes consultar esta fuente.
Si la herramienta no devuelve información relevante, indicar que la política no contempla esa situación.
📚 Fuente única y oficial:
Las respuestas deben estar basadas únicamente en la política oficial de Banorte.
❌ Prohibido usar Google, foros, suposiciones o contenido externo.
✅ Si get_information devuelve un enlace oficial o documento, debe incluirse con el ícono:
🔗 [Ver política oficial].
📐 Formato estructurado y profesional:
Utilizar un formato claro y fácil de leer:
• Viñetas para listar pasos, excepciones o montos autorizados
• Negritas para resaltar conceptos clave
• Separación clara entre secciones
🔒 Cero invención o interpretación libre:
Si una pregunta no está contemplada en la política, responder claramente:
❗ La política oficial no proporciona lineamientos específicos sobre este caso.
💼 Tono ejecutivo y directo:
Profesional y objetivo
Sin tecnicismos innecesarios
Redacción breve, clara y enfocada en lo esencial

View File

@@ -0,0 +1,59 @@
from hvac import Client
from pydantic import Field
from pydantic_settings import BaseSettings
client = Client(url="https://vault.ia-innovacion.work")
if not client.is_authenticated():
raise Exception("Vault authentication failed")
secret_map = client.secrets.kv.v2.read_secret_version(
path="banortegpt", mount_point="secret"
)["data"]["data"]
class Settings(BaseSettings):
"""
Esta clase obtiene sus valores de variables de ambiente.
Si no estan en el ambiente, los jala de nuestra Vault.
"""
# Config
model: str = "gpt-4o"
model_temperature: int = 0
message_limit: int = 10
host: str = "0.0.0.0"
port: int = 8000
vector_index: str = "chat-egresos-3"
search_limit: int = 3
embedding_model: str = "text-embedding-3-large"
# API Keys
azure_endpoint: str = Field(default_factory=lambda: secret_map["azure_endpoint"])
openai_api_key: str = Field(default_factory=lambda: secret_map["openai_api_key"])
openai_api_version: str = Field(
default_factory=lambda: secret_map["openai_api_version"]
)
mongodb_url: str = Field(
default_factory=lambda: secret_map["cosmosdb_connection_string"]
)
qdrant_url: str = Field(default_factory=lambda: secret_map["qdrant_api_url"])
qdrant_api_key: str | None = Field(
default_factory=lambda: secret_map["qdrant_api_key"]
)
async def init_mongo_db(self):
"""Este helper inicia la conexion enter el MongoDB ORM y nuestra instancia"""
from beanie import init_beanie
from motor.motor_asyncio import AsyncIOMotorClient
from banortegpt.database.mongo_memory.models import Conversation
await init_beanie(
database=AsyncIOMotorClient(self.mongodb_url).banortegptdos,
document_models=[Conversation],
)
config = Settings()

View File

@@ -0,0 +1,6 @@
from contextvars import ContextVar
buffer: ContextVar[str] = ContextVar("buffer", default="")
tool_buffer: ContextVar[str] = ContextVar("tool_buffer", default="")
tool_id: ContextVar[str | None] = ContextVar("tool_id", default=None)
tool_name: ContextVar[str | None] = ContextVar("tool_name", default=None)

View File

@@ -0,0 +1,112 @@
import uuid
import time
from contextlib import asynccontextmanager
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from langfuse import Langfuse
from api import services
from api.agent import Agent
from api.config import config
# Configurar Langfuse
langfuse = Langfuse(
public_key="pk-lf-49cb04b3-0c7d-475b-8105-ad8b8749ecdd",
secret_key="sk-lf-e02fa322-c709-4d80-bef2-9cb279846a0c",
host="https://ailogger.azurewebsites.net"
)
@asynccontextmanager
async def lifespan(_: FastAPI):
await config.init_mongo_db()
yield
app = FastAPI(lifespan=lifespan)
agent = Agent()
@app.post("/api/v1/conversation")
async def create_conversation():
conversation_id = uuid.uuid4()
await services.create_conversation(conversation_id, agent.system_prompt)
return {"conversation_id": conversation_id}
class Message(BaseModel):
conversation_id: uuid.UUID
prompt: str
@app.post("/api/v1/message")
async def send(message: Message):
# Crear trace principal
trace = langfuse.trace(
name="chat_message",
session_id=str(message.conversation_id),
input={
"prompt": message.prompt,
"conversation_id": str(message.conversation_id)
}
)
def b64_sse(func):
async def wrapper(*args, **kwargs):
response_parts = []
start_time = time.time()
async for chunk in func(*args, **kwargs):
if chunk.type == "text" and chunk.content:
response_parts.append(str(chunk.content))
content = chunk.model_dump_json()
data = f"data: {content}\n\n"
yield data
end_time = time.time()
latency_ms = round((end_time - start_time) * 1000)
full_response = "".join(response_parts)
input_tokens = len(message.prompt.split()) * 1.3
output_tokens = len(full_response.split()) * 1.3
total_tokens = int(input_tokens + output_tokens)
cost_per_1k_input = 0.03
cost_per_1k_output = 0.06
total_cost = (input_tokens/1000 * cost_per_1k_input) + (output_tokens/1000 * cost_per_1k_output)
trace.update(
output={"response": full_response},
usage={
"input": int(input_tokens),
"output": int(output_tokens),
"total": total_tokens,
"unit": "TOKENS"
}
)
langfuse.score(
trace_id=trace.id,
name="latency",
value=latency_ms,
comment=f"Response time: {latency_ms}ms"
)
langfuse.score(
trace_id=trace.id,
name="cost",
value=round(total_cost, 4),
comment=f"Estimated cost: ${round(total_cost, 4)}"
)
return wrapper
sse_stream = b64_sse(services.stream)
generator = sse_stream(agent, message.prompt, message.conversation_id)
return StreamingResponse(generator, media_type="text/event-stream")

View File

@@ -0,0 +1,8 @@
from banortegpt.database.mongo_memory.crud import create_conversation
from .stream_response import stream
__all__ = [
"stream",
"create_conversation",
]

View File

@@ -0,0 +1,86 @@
import json
from enum import StrEnum
from typing import TypeAlias
from uuid import UUID
from pydantic import BaseModel
import api.context as ctx
from api.agent import Agent
from banortegpt.database.mongo_memory import crud
class ChunkType(StrEnum):
START = "start"
TEXT = "text"
REFERENCE = "reference"
IMAGE = "image"
TOOL = "tool"
END = "end"
ERROR = "error"
ContentType: TypeAlias = str | int
class ResponseChunk(BaseModel):
type: ChunkType
content: ContentType | list[ContentType] | None
images: list[str] | None = None # Nuevo campo para imágenes
async def stream(agent: Agent, prompt: str, conversation_id: UUID):
yield ResponseChunk(type=ChunkType.START, content="")
conversation = await crud.get_conversation(conversation_id)
if conversation is None:
raise ValueError("Conversation not found")
conversation.add(role="user", content=prompt)
history = conversation.to_openai_format(agent.message_limit, langchain_compat=True)
async for content in agent.stream(history):
yield ResponseChunk(type=ChunkType.TEXT, content=content)
if (tool_id := ctx.tool_id.get()) is not None:
tool_buffer = ctx.tool_buffer.get()
assert tool_buffer is not None
tool_name = ctx.tool_name.get()
assert tool_name is not None
yield ResponseChunk(type=ChunkType.TOOL, content=None)
buffer_dict = json.loads(tool_buffer)
result, images = await agent.tool_map[tool_name](**buffer_dict)
# Enviar imágenes si existen
if images:
yield ResponseChunk(type=ChunkType.IMAGE, content=images)
conversation.add(
role="assistant",
tool_calls=[
{
"id": tool_id,
"type": "function",
"function": {
"name": tool_name,
"arguments": tool_buffer,
},
}
],
)
conversation.add(role="tool", content=result, tool_call_id=tool_id)
history = conversation.to_openai_format(agent.message_limit, langchain_compat=True)
async for content in agent.stream(history, {"tools": None}):
yield ResponseChunk(type=ChunkType.TEXT, content=content)
conversation.add(role="assistant", content=ctx.buffer.get())
await conversation.replace()
yield ResponseChunk(type=ChunkType.END, content="")

View File

@@ -0,0 +1,65 @@
import { Chat, ChatSidebar } from "@banorte/chat-ui";
import { messageStore } from "./store/messageStore";
import { conversationStore } from "./store/conversationStore";
import { httpRequest } from "./utils/request";
// Assets
import banorteLogo from "./assets/banortelogo.png";
import sidebarMaya from "./assets/sidebar_maya_contigo.png";
import brujulaElipse from "./assets/brujula_elipse.png";
import sendIcon from "./assets/chat_maya_boton_enviar.png";
import userAvatar from "./assets/chat_maya_default_avatar.png";
import botAvatar from "./assets/brujula.png";
function App() {
const { messages, pushMessage } = messageStore();
const {
conversationId,
setConversationId,
setAssistantName,
receivingMsg,
setReceivingMsg
} = conversationStore();
const handleStartConversation = async (user: string, assistant: string): Promise<string> => {
const response = await httpRequest("POST", "/v1/conversation", { user, assistant });
console.log("Conversation id:", response.conversation_id);
return response.conversation_id;
};
const handleFeedback = async (key: string, rating: string): Promise<void> => {
await httpRequest("POST", "/v1/feedback", { key, rating });
};
const assistant = "Maya" + "ChatEgresos";
return (
<div className="w-screen flex flex-col h-screen min-h-screen scrollbar-none">
<div className="w-full flex">
<ChatSidebar
assistant={assistant}
logoSrc={banorteLogo}
sidebarImageSrc={sidebarMaya}
assistantAvatarSrc={brujulaElipse}
/>
<Chat
assistant={assistant}
messages={messages}
pushMessage={pushMessage}
conversationId={conversationId}
setConversationId={setConversationId}
setAssistantName={setAssistantName}
receivingMsg={receivingMsg}
setReceivingMsg={setReceivingMsg}
onStartConversation={handleStartConversation}
sendIcon={sendIcon}
userAvatar={userAvatar}
botAvatar={botAvatar}
onFeedback={handleFeedback}
/>
</div>
</div>
);
}
export default App;

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

View File

@@ -0,0 +1,16 @@
@tailwind base;
@tailwind components;
@tailwind utilities;
.markdown a {
color: #0000FF;
text-decoration: underline;
}
.markdown a:hover {
color: #FF0000;
}
.markdown a:visited {
color: #800080;
}

View File

@@ -0,0 +1,5 @@
import ReactDOM from "react-dom/client";
import App from "./App.tsx";
import "./index.css";
ReactDOM.createRoot(document.getElementById("root")!).render(<App />);

View File

@@ -0,0 +1,19 @@
import { create } from "zustand";
interface conversationState {
assistantName: string;
conversationId: string;
receivingMsg: boolean;
setConversationId: (newId: string) => void;
setAssistantName: (newName: string) => void;
setReceivingMsg: (newState: boolean) => void;
}
export const conversationStore = create<conversationState>()((set) => ({
assistantName: "",
conversationId: "",
receivingMsg: false,
setConversationId: (newId) => set({ conversationId: newId }),
setAssistantName: (newName) => set({ assistantName: newName }),
setReceivingMsg: (newState) => set({ receivingMsg: newState }),
}));

View File

@@ -0,0 +1,14 @@
import { create } from "zustand";
interface messageState {
messages: Array<{ user: boolean; content: string }>;
pushMessage: (newMessage: { user: boolean; content: string }) => void;
resetConversation: () => void;
}
export const messageStore = create<messageState>()((set) => ({
messages: [],
pushMessage: (newMessage) =>
set((state) => ({ messages: [...state.messages, newMessage] })),
resetConversation: () => set(() => ({ messages: [] })),
}));

View File

@@ -0,0 +1,16 @@
export async function httpRequest(
method: string,
endpoint: string,
body: object | null,
) {
const url = "/api" + endpoint;
const data = {
method: method,
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(body),
credentials: "include" as RequestCredentials,
};
return await fetch(url, data).then((response) => response.json());
}

1
apps/ChatEgresos/gui/vite-env.d.ts vendored Normal file
View File

@@ -0,0 +1 @@
/// <reference types="vite/client" />

View File

@@ -0,0 +1,13 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/vite.svg" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>ChatEgresos</title>
</head>
<body>
<div id="root"></div>
<script type="module" src="/gui/main.tsx"></script>
</body>
</html>

View File

@@ -0,0 +1,40 @@
{
"name": "ChatEgresos",
"private": true,
"version": "0.0.7",
"type": "module",
"scripts": {
"dev": "vite",
"build": "tsc && vite build",
"lint": "eslint . --ext ts,tsx --report-unused-disable-directives --max-warnings 0",
"preview": "vite preview"
},
"dependencies": {
"@banorte/chat-ui": "workspace:*",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"react-markdown": "^9.0.1",
"react-spring": "^9.7.4",
"rehype-raw": "^7.0.0",
"sse.js": "^2.5.0",
"zustand": "^4.5.2"
},
"devDependencies": {
"@iconify-icon/react": "^2.1.0",
"@types/react": "^18.2.67",
"@types/react-dom": "^18.2.22",
"@typescript-eslint/eslint-plugin": "^7.3.1",
"@typescript-eslint/parser": "^7.3.1",
"@vitejs/plugin-react": "^4.2.1",
"autoprefixer": "^10.4.19",
"daisyui": "^4.7.3",
"eslint": "^8.57.0",
"eslint-plugin-react-hooks": "^4.6.0",
"eslint-plugin-react-refresh": "^0.4.6",
"postcss": "^8.4.38",
"tailwind-scrollbar": "^3.1.0",
"tailwindcss": "^3.4.1",
"typescript": "^5.4.3",
"vite": "^5.2.3"
}
}

View File

@@ -0,0 +1,6 @@
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
},
}

View File

@@ -0,0 +1,20 @@
[project]
name = "ChatEgresos"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12, <4"
dependencies = [
"aiohttp>=3.11.16",
"fastapi>=0.115.6",
"hvac>=2.3.0",
"langchain-azure-ai[opentelemetry]>=0.1.4",
"mongo-memory",
"pydantic-settings>=2.8.1",
"qdrant",
"uvicorn>=0.34.0",
]
[tool.uv.sources]
mongo-memory = { workspace = true }
qdrant = { workspace = true }

154
apps/ChatEgresos/readme.md Normal file
View File

@@ -0,0 +1,154 @@
# 💬 ChatEgresos
ChatEgresos es un proyecto del equipo de Innovación en **Banorte** diseñado para acelerar la creación de aplicaciones **RAG (Retrieval-Augmented Generation)** enfocadas en la gestión, consulta y análisis de información de egresos.
Este repositorio no solo contiene la aplicación principal, sino también una librería de componentes reutilizables y notebooks para el procesamiento de documentos, evaluación de modelos y generación de datos sintéticos.
---
## 🚀 Inicio Rápido
```bash
# Instala dependencias del monorepo
mise setup
# Crea una nueva aplicación RAG (ejemplo de prueba)
mise new prueba
# Levanta un entorno de desarrollo
mise dev --app prueba
```
---
## ✅ Prerrequisitos
Si estás en el entorno de desarrollo oficial, ya deberías contar con estas herramientas.
De lo contrario, instálalas previamente:
- **Mise** → [Documentación](https://mise.jdx.dev/)
- **Docker** → [Documentación](https://www.docker.com/)
- **Vault** → [Documentación](https://developer.hashicorp.com/vault/)
---
## 📂 Estructura del Proyecto
```
chategresos/
├── apps/ # Aplicaciones individuales de ChatEgresos
├── packages/ # Paquetes compartidos
├── notebooks/ # Notebooks para procesamiento y evaluación
├── .templates/ # Plantillas de aplicaciones
├── .containers/ # Configuraciones de Docker
└── compose.yaml # Servicios de Docker Compose
```
---
## 🛠️ Comandos de Desarrollo
### 📌 Crear Nuevos Proyectos
```bash
# Crea una nueva aplicación RAG
mise new <nombre-app>
# Creación interactiva
mise new
```
### 🖥️ Entorno de Desarrollo
```bash
# Inicia servidores de desarrollo (frontend + backend)
mise dev
mise dev --app <nombre-app> # App específica
mise dev --no-dashboard # Sin dashboard en vivo
mise dev --check-deps # Verifica dependencias
mise dev --list-apps # Lista apps disponibles
```
### 📦 Gestión de Contenedores
```bash
# Inicia contenedores localmente
mise container:start
mise container:start <nombre-app>
# Subir imágenes a Azure Container Registry
mise container:push
mise container:push <nombre-imagen>
```
---
## 🏗️ Stack Tecnológico
### Tecnologías Principales
- **Frontend** → React / Next.js + TypeScript
- **Backend** → Python + FastAPI / Uvicorn
- **Paquetería** → pnpm (Node.js), uv (Python)
- **Contenedores** → Docker & Docker Compose
### Infraestructura
- **Gestión de Secretos** → HashiCorp Vault
- **Registro de Contenedores** → Azure Container Registry
- **Observabilidad** → OpenTelemetry
- **Proxy Inverso** → Traefik
---
## 🎯 Tu Primera App en ChatEgresos
1. **Genera desde plantilla**
```bash
mise new mi-app-chategresos
```
2. **Inicia el entorno**
```bash
mise dev --app mi-app-chategresos
```
3. **Accede a tu aplicación**
- 🌐 Frontend: [http://localhost:3000](http://localhost:3000)
- ⚙️ API Backend: [http://localhost:8000](http://localhost:8000)
---
## 🔧 Configuración
### Desarrollo Local
- Frontend → Puerto `3000`
- Backend APIs → Puerto `8000`
- Contenedores → Puertos auto-asignados (8001+)
### Depuración
- Usa `--no-dashboard` para un log más limpio
- Ejecuta `mise dev --check-deps` para verificar dependencias
- Logs de contenedores:
```bash
docker logs <nombre-contenedor>
```
---
## 🤝 Contribuyendo
1. Crea nuevas aplicaciones usando las plantillas disponibles
2. Respeta la estructura del monorepo
3. Usa los comandos de desarrollo recomendados
4. Verifica dependencias y realiza pruebas antes de hacer PRs
---
## 📖 Recursos Adicionales
- 📁 **Plantillas** → `.templates/`
- 🐳 **Docker Config** → `.containers/`
- ⚡ **Tareas Automáticas** → `.mise/tasks/`
---
*ChatEgresos: Innovación con IA para la gestión de egresos* 🚀

View File

@@ -0,0 +1,27 @@
/** @type {import('tailwindcss').Config} */
export default {
content: ["./index.html", "./gui/**/*.{js,ts,jsx,tsx}"],
theme: {
extend: {
backgroundImage: {
"navigation-pattern": "url('./assets/navigation.webp')",
},
},
},
plugins: [
require("daisyui"),
require("tailwind-scrollbar"),
require("@banorte/chat-ui/tailwind")
],
daisyui: {
themes: [
{
light: {
...require("daisyui/src/theming/themes")["light"],
primary: "red",
secondary: "teal",
},
},
],
},
};

View File

@@ -0,0 +1,25 @@
{
"compilerOptions": {
"target": "ES2023",
"useDefineForClassFields": true,
"lib": ["ES2023", "DOM", "DOM.Iterable", "ES2021.String"],
"module": "ESNext",
"skipLibCheck": true,
/* Bundler mode */
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"resolveJsonModule": true,
"isolatedModules": true,
"noEmit": true,
"jsx": "react-jsx",
/* Linting */
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true
},
"include": ["gui"],
"references": [{ "path": "./tsconfig.node.json" }]
}

View File

@@ -0,0 +1,11 @@
{
"compilerOptions": {
"composite": true,
"skipLibCheck": true,
"module": "ESNext",
"moduleResolution": "bundler",
"allowSyntheticDefaultImports": true,
"strict": true
},
"include": ["vite.config.ts"]
}

View File

@@ -0,0 +1,17 @@
import { defineConfig } from "vite";
import react from "@vitejs/plugin-react";
// https://vitejs.dev/config/
export default defineConfig({
plugins: [react()],
server: {
host: "0.0.0.0",
port: 3000,
proxy: {
"/api": {
target: "http://localhost:8000",
},
},
allowedHosts: true,
},
});

18
apps/Test/.eslintrc.cjs Normal file
View File

@@ -0,0 +1,18 @@
module.exports = {
root: true,
env: { browser: true, es2020: true },
extends: [
'eslint:recommended',
'plugin:@typescript-eslint/recommended',
'plugin:react-hooks/recommended',
],
ignorePatterns: ['dist', '.eslintrc.cjs'],
parser: '@typescript-eslint/parser',
plugins: ['react-refresh'],
rules: {
'react-refresh/only-export-components': [
'warn',
{ allowConstantExport: true },
],
},
}

65
apps/Test/gui/App.tsx Normal file
View File

@@ -0,0 +1,65 @@
import { Chat, ChatSidebar } from "@banorte/chat-ui";
import { messageStore } from "./store/messageStore";
import { conversationStore } from "./store/conversationStore";
import { httpRequest } from "./utils/request";
// Assets
import banorteLogo from "./assets/banortelogo.png";
import sidebarMaya from "./assets/sidebar_maya_contigo.png";
import brujulaElipse from "./assets/brujula_elipse.png";
import sendIcon from "./assets/chat_maya_boton_enviar.png";
import userAvatar from "./assets/chat_maya_default_avatar.png";
import botAvatar from "./assets/brujula.png";
function App() {
const { messages, pushMessage } = messageStore();
const {
conversationId,
setConversationId,
setAssistantName,
receivingMsg,
setReceivingMsg
} = conversationStore();
const handleStartConversation = async (user: string, assistant: string): Promise<string> => {
const response = await httpRequest("POST", "/v1/conversation", { user, assistant });
console.log("Conversation id:", response.conversation_id);
return response.conversation_id;
};
const handleFeedback = async (key: string, rating: string): Promise<void> => {
await httpRequest("POST", "/v1/feedback", { key, rating });
};
const assistant = "Maya" + "Test";
return (
<div className="w-screen flex flex-col h-screen min-h-screen scrollbar-none">
<div className="w-full flex">
<ChatSidebar
assistant={assistant}
logoSrc={banorteLogo}
sidebarImageSrc={sidebarMaya}
assistantAvatarSrc={brujulaElipse}
/>
<Chat
assistant={assistant}
messages={messages}
pushMessage={pushMessage}
conversationId={conversationId}
setConversationId={setConversationId}
setAssistantName={setAssistantName}
receivingMsg={receivingMsg}
setReceivingMsg={setReceivingMsg}
onStartConversation={handleStartConversation}
sendIcon={sendIcon}
userAvatar={userAvatar}
botAvatar={botAvatar}
onFeedback={handleFeedback}
/>
</div>
</div>
);
}
export default App;

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

16
apps/Test/gui/index.css Normal file
View File

@@ -0,0 +1,16 @@
@tailwind base;
@tailwind components;
@tailwind utilities;
.markdown a {
color: #0000FF;
text-decoration: underline;
}
.markdown a:hover {
color: #FF0000;
}
.markdown a:visited {
color: #800080;
}

5
apps/Test/gui/main.tsx Normal file
View File

@@ -0,0 +1,5 @@
import ReactDOM from "react-dom/client";
import App from "./App.tsx";
import "./index.css";
ReactDOM.createRoot(document.getElementById("root")!).render(<App />);

View File

@@ -0,0 +1,19 @@
import { create } from "zustand";
interface conversationState {
assistantName: string;
conversationId: string;
receivingMsg: boolean;
setConversationId: (newId: string) => void;
setAssistantName: (newName: string) => void;
setReceivingMsg: (newState: boolean) => void;
}
export const conversationStore = create<conversationState>()((set) => ({
assistantName: "",
conversationId: "",
receivingMsg: false,
setConversationId: (newId) => set({ conversationId: newId }),
setAssistantName: (newName) => set({ assistantName: newName }),
setReceivingMsg: (newState) => set({ receivingMsg: newState }),
}));

View File

@@ -0,0 +1,14 @@
import { create } from "zustand";
interface messageState {
messages: Array<{ user: boolean; content: string }>;
pushMessage: (newMessage: { user: boolean; content: string }) => void;
resetConversation: () => void;
}
export const messageStore = create<messageState>()((set) => ({
messages: [],
pushMessage: (newMessage) =>
set((state) => ({ messages: [...state.messages, newMessage] })),
resetConversation: () => set(() => ({ messages: [] })),
}));

View File

@@ -0,0 +1,16 @@
export async function httpRequest(
method: string,
endpoint: string,
body: object | null,
) {
const url = "/api" + endpoint;
const data = {
method: method,
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(body),
credentials: "include" as RequestCredentials,
};
return await fetch(url, data).then((response) => response.json());
}

1
apps/Test/gui/vite-env.d.ts vendored Normal file
View File

@@ -0,0 +1 @@
/// <reference types="vite/client" />

13
apps/Test/index.html Normal file
View File

@@ -0,0 +1,13 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/vite.svg" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Test</title>
</head>
<body>
<div id="root"></div>
<script type="module" src="/gui/main.tsx"></script>
</body>
</html>

40
apps/Test/package.json Normal file
View File

@@ -0,0 +1,40 @@
{
"name": "Test",
"private": true,
"version": "0.0.7",
"type": "module",
"scripts": {
"dev": "vite",
"build": "tsc && vite build",
"lint": "eslint . --ext ts,tsx --report-unused-disable-directives --max-warnings 0",
"preview": "vite preview"
},
"dependencies": {
"@banorte/chat-ui": "workspace:*",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"react-markdown": "^9.0.1",
"react-spring": "^9.7.4",
"rehype-raw": "^7.0.0",
"sse.js": "^2.5.0",
"zustand": "^4.5.2"
},
"devDependencies": {
"@iconify-icon/react": "^2.1.0",
"@types/react": "^18.2.67",
"@types/react-dom": "^18.2.22",
"@typescript-eslint/eslint-plugin": "^7.3.1",
"@typescript-eslint/parser": "^7.3.1",
"@vitejs/plugin-react": "^4.2.1",
"autoprefixer": "^10.4.19",
"daisyui": "^4.7.3",
"eslint": "^8.57.0",
"eslint-plugin-react-hooks": "^4.6.0",
"eslint-plugin-react-refresh": "^0.4.6",
"postcss": "^8.4.38",
"tailwind-scrollbar": "^3.1.0",
"tailwindcss": "^3.4.1",
"typescript": "^5.4.3",
"vite": "^5.2.3"
}
}

View File

@@ -0,0 +1,6 @@
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
},
}

18
apps/Test/pyproject.toml Normal file
View File

@@ -0,0 +1,18 @@
[project]
name = "Test"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12, <4"
dependencies = [
"aiohttp>=3.11.16",
"fastapi>=0.115.6",
"hvac>=2.3.0",
"langchain-azure-ai[opentelemetry]>=0.1.4",
"mongo-memory",
"pydantic-settings>=2.8.1",
"uvicorn>=0.34.0",
]
[tool.uv.sources]
mongo-memory = { workspace = true }

View File

@@ -0,0 +1,27 @@
/** @type {import('tailwindcss').Config} */
export default {
content: ["./index.html", "./gui/**/*.{js,ts,jsx,tsx}"],
theme: {
extend: {
backgroundImage: {
"navigation-pattern": "url('./assets/navigation.webp')",
},
},
},
plugins: [
require("daisyui"),
require("tailwind-scrollbar"),
require("@banorte/chat-ui/tailwind")
],
daisyui: {
themes: [
{
light: {
...require("daisyui/src/theming/themes")["light"],
primary: "red",
secondary: "teal",
},
},
],
},
};

25
apps/Test/tsconfig.json Normal file
View File

@@ -0,0 +1,25 @@
{
"compilerOptions": {
"target": "ES2023",
"useDefineForClassFields": true,
"lib": ["ES2023", "DOM", "DOM.Iterable", "ES2021.String"],
"module": "ESNext",
"skipLibCheck": true,
/* Bundler mode */
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"resolveJsonModule": true,
"isolatedModules": true,
"noEmit": true,
"jsx": "react-jsx",
/* Linting */
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true
},
"include": ["gui"],
"references": [{ "path": "./tsconfig.node.json" }]
}

View File

@@ -0,0 +1,11 @@
{
"compilerOptions": {
"composite": true,
"skipLibCheck": true,
"module": "ESNext",
"moduleResolution": "bundler",
"allowSyntheticDefaultImports": true,
"strict": true
},
"include": ["vite.config.ts"]
}

17
apps/Test/vite.config.ts Normal file
View File

@@ -0,0 +1,17 @@
import { defineConfig } from "vite";
import react from "@vitejs/plugin-react";
// https://vitejs.dev/config/
export default defineConfig({
plugins: [react()],
server: {
host: "0.0.0.0",
port: 3000,
proxy: {
"/api": {
target: "http://localhost:8000",
},
},
allowedHosts: true,
},
});

View File

@@ -0,0 +1,18 @@
module.exports = {
root: true,
env: { browser: true, es2020: true },
extends: [
'eslint:recommended',
'plugin:@typescript-eslint/recommended',
'plugin:react-hooks/recommended',
],
ignorePatterns: ['dist', '.eslintrc.cjs'],
parser: '@typescript-eslint/parser',
plugins: ['react-refresh'],
rules: {
'react-refresh/only-export-components': [
'warn',
{ allowConstantExport: true },
],
},
}

6
apps/bursatil/README.md Normal file
View File

@@ -0,0 +1,6 @@
Eres MayaBursatil, una muy amigable y símpatica asistente virtual del departamento de contraloria bursatil de Banorte.
Tu objetivo es responder preguntas de usuarios de manera informativa y empatica.
Para cada pregunta, utiliza la herramienta 'get_information' para obtener informacion de nuestro FAQ.
Utiliza la informacion para responder la pregunta del usuario.
Utiliza emojis.
Si no puedes responder la pregunta basado en la informacion del FAQ, responde con el contenido en el FALLBACK.

View File

View File

@@ -0,0 +1,3 @@
from .main import MayaBursatil
__all__ = ["MayaBursatil"]

View File

@@ -0,0 +1,130 @@
from pathlib import Path
from typing import Any
from langchain_core.messages import AIMessageChunk
from pydantic import BaseModel, Field
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
from banortegpt.storage.azure_storage import AzureStorage
from banortegpt.vector.qdrant import AsyncQdrant
from api import context
from api.config import config
parent = Path(__file__).parent
SYSTEM_PROMPT = (parent / "system_prompt.md").read_text()
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
class get_information(BaseModel):
"""Search a private repository for information."""
question: str = Field(..., description="The user question")
class MayaBursatil:
system_prompt = SYSTEM_PROMPT
generation_config = {
"temperature": config.model_temperature,
}
embedding_model = config.embedding_model
message_limit = config.message_limit
index = config.vector_index
limit = config.search_limit
bucket = config.storage_bucket
search = AsyncQdrant.from_config(config)
llm = AzureAIChatCompletionsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
credential=config.openai_api_key,
).bind_tools([get_information])
embedder = AzureAIEmbeddingsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
credential=config.openai_api_key,
)
storage = AzureStorage.from_config(config)
def __init__(self) -> None:
self.tool_map = {
"get_information": self.get_information
}
def build_response(self, payloads, fallback):
template = "<FAQ {index}>\n\n{content}\n\n</FAQ {index}>"
filled_templates = [
template.format(index=idx, content=payload["content"])
for idx, payload in enumerate(payloads)
]
filled_templates.append(f"<FALLBACK>\n{fallback}\n</FALLBACK>")
return "\n".join(filled_templates)
async def get_information(self, question: str):
embedding = await self.embedder.aembed_query(question)
payloads = await self.search.semantic_search(embedding=embedding, collection=self.index, limit=self.limit)
fallback_messages: dict[str, int] = {}
for payload in payloads:
fallback_message = payload.get("fallback_message", "None")
if fallback_message not in fallback_messages:
fallback_messages[fallback_message] = 1
else:
fallback_messages[fallback_message] += 1
fallback = max(fallback_messages, key=fallback_messages.get) # type: ignore
tool_response = self.build_response(payloads, fallback)
return tool_response, payloads
async def get_shareable_urls(self, payloads: list):
reference_urls = []
image_urls = []
for payload in payloads:
if imagen := payload.get("imagen"):
image_url = await self.storage.get_file_url(
filename=imagen,
bucket=self.bucket,
minute_duration=20,
image=True,
)
if image_url:
image_urls.append(image_url)
else:
print("Image not found")
return reference_urls, image_urls
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
generation_config_copy = self.generation_config.copy()
if overwrites:
for k, v in overwrites.items():
generation_config_copy[k] = v
return generation_config_copy
async def stream(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
async for delta in self.llm.astream(input=history, **generation_config):
assert isinstance(delta, AIMessageChunk)
if call := delta.tool_call_chunks:
if tool_id := call[0].get("id"):
context.tool_id.set(tool_id)
if name := call[0].get("name"):
context.tool_name.set(name)
if args := call[0].get("args"):
context.tool_buffer.set(context.tool_buffer.get() + args)
else:
if buffer := delta.content:
assert isinstance(buffer, str)
context.buffer.set(context.buffer.get() + buffer)
yield buffer
async def generate(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
return await self.llm.ainvoke(input=history, **generation_config)

View File

@@ -0,0 +1,6 @@
Eres MayaBursatil, una muy amigable y símpatica asistente virtual del departamento de contraloria bursatil de Banorte.
Tu objetivo es responder preguntas de usuarios de manera informativa y empatica.
Para cada pregunta, utiliza la herramienta 'get_information' para obtener informacion de nuestro FAQ.
Utiliza la informacion para responder la pregunta del usuario.
Utiliza emojis.
Si no puedes responder la pregunta basado en la informacion del FAQ, responde con el contenido en el FALLBACK.

View File

@@ -0,0 +1,55 @@
from hvac import Client
from pydantic import Field
from pydantic_settings import BaseSettings
client = Client(url="https://vault.ia-innovacion.work")
if not client.is_authenticated():
raise Exception("Vault authentication failed")
secret_map = client.secrets.kv.v2.read_secret_version(
path="banortegpt", mount_point="secret"
)["data"]["data"]
class Settings(BaseSettings):
# Config
model: str = "gpt-4o"
model_temperature: int = 0
embedding_model: str = "text-embedding-3-large"
message_limit: int = 10
storage_bucket: str = "bursatilreferences"
vector_index: str = "MayaBursatil"
search_limit: int = 3
host: str = "0.0.0.0"
port: int = 8000
# API Keys
azure_endpoint: str = Field(default_factory=lambda: secret_map["azure_endpoint"])
openai_api_key: str = Field(default_factory=lambda: secret_map["openai_api_key"])
openai_api_version: str = Field(
default_factory=lambda: secret_map["openai_api_version"]
)
azure_blob_connection_string: str = Field(
default_factory=lambda: secret_map["azure_blob_connection_string"]
)
qdrant_url: str = Field(default_factory=lambda: secret_map["qdrant_api_url"])
qdrant_api_key: str | None = Field(
default_factory=lambda: secret_map["qdrant_api_key"]
)
mongodb_url: str = Field(
default_factory=lambda: secret_map["cosmosdb_connection_string"]
)
async def init_mongo_db(self):
from beanie import init_beanie
from motor.motor_asyncio import AsyncIOMotorClient
from banortegpt.database.mongo_memory.models import Conversation
await init_beanie(
database=AsyncIOMotorClient(self.mongodb_url).banortegptdos,
document_models=[Conversation],
)
config = Settings()

View File

@@ -0,0 +1,7 @@
from contextvars import ContextVar
buffer: ContextVar[str] = ContextVar("buffer", default="")
tool_buffer: ContextVar[str] = ContextVar("tool_buffer", default="")
tool_id: ContextVar[str | None] = ContextVar("tool_id", default=None)
tool_name: ContextVar[str | None] = ContextVar("tool_name", default=None)

View File

@@ -0,0 +1,55 @@
import uuid
from contextlib import asynccontextmanager
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from api import services
from api.agent import MayaBursatil
from api.config import config
@asynccontextmanager
async def lifespan(_: FastAPI):
await config.init_mongo_db()
yield
app = FastAPI(lifespan=lifespan)
agent = MayaBursatil()
class Message(BaseModel):
conversation_id: uuid.UUID
prompt: str
@app.post("/api/v1/conversation")
async def create_conversation():
conversation_id = uuid.uuid4()
await services.create_conversation(conversation_id, agent.system_prompt)
return {"conversation_id": conversation_id}
@app.post("/api/v1/message")
async def send(message: Message, stream: bool = False):
if stream is True:
def b64_sse(func):
async def wrapper(*args, **kwargs):
async for chunk in func(*args, **kwargs):
content = chunk.model_dump_json()
data = f"data: {content}\n\n"
yield data
return wrapper
sse_stream = b64_sse(services.stream)
generator = sse_stream(agent, message.prompt, message.conversation_id)
return StreamingResponse(generator, media_type="text/event-stream")
else:
response = await services.generate(
agent, message.prompt, message.conversation_id
)
return response

View File

@@ -0,0 +1,10 @@
from banortegpt.database.mongo_memory.crud import create_conversation
from .generate_response import generate
from .stream_response import stream
__all__ = [
"stream",
"generate",
"create_conversation",
]

View File

@@ -0,0 +1,89 @@
import json
from typing import Any
from uuid import UUID
from langfuse.decorators import langfuse_context, observe
from pydantic import BaseModel
from api import context as ctx
from api.agent import MayaBursatil
from banortegpt.database.mongo_memory import crud
class Response(BaseModel):
content: str
urls: list[str]
@observe(capture_input=False, capture_output=False)
async def generate(
agent: MayaBursatil,
prompt: str,
conversation_id: UUID,
) -> Response:
conversation = await crud.get_conversation(conversation_id)
if conversation is None:
raise ValueError(f"Conversation with id {conversation_id} not found")
conversation.add(role="user", content=prompt)
response = await agent.generate(conversation.to_openai_format(agent.message_limit))
reference_urls, image_urls = [], []
if call := response.tool_calls:
if id := call[0].id:
ctx.tool_id.set(id)
if name := call[0].function.name:
ctx.tool_name.set(name)
ctx.tool_buffer.set(call[0].function.arguments)
else:
ctx.buffer.set(response.content)
buffer = ctx.buffer.get()
tool_buffer = ctx.tool_buffer.get()
tool_id = ctx.tool_id.get()
tool_name = ctx.tool_name.get()
if tool_id is not None:
# Si tool_buffer es un string JSON, lo convertimos a diccionario
if isinstance(tool_buffer, str):
try:
tool_args = json.loads(tool_buffer)
except json.JSONDecodeError:
tool_args = {"question": tool_buffer}
else:
tool_args = tool_buffer
response, payloads = await agent.tool_map[tool_name](**tool_args) # type: ignore
tool_call: dict[str, Any] = agent.llm.build_tool_call(
tool_id, tool_name, tool_buffer
)
tool_call_id: dict[str, Any] = agent.llm.build_tool_call_id(tool_id)
conversation.add("assistant", **tool_call)
conversation.add("tool", content=response, **tool_call_id)
response = await agent.generate(
conversation.to_openai_format(agent.message_limit), {"tools": None}
)
ctx.buffer.set(response.content)
reference_urls, image_urls = await agent.get_shareable_urls(payloads) # type: ignore
buffer = ctx.buffer.get()
if buffer is None:
raise ValueError("No buffer found")
conversation.add(role="assistant", content=buffer)
langfuse_context.update_current_trace(
name=str(conversation_id),
session_id=str(conversation_id),
input=prompt,
output=buffer,
)
return Response(content=buffer, urls=reference_urls + image_urls)

View File

@@ -0,0 +1,100 @@
import json
from enum import StrEnum
from typing import TypeAlias
from uuid import UUID
from langfuse.decorators import langfuse_context, observe
from pydantic import BaseModel
from api import context as ctx
from api.agent import MayaBursatil
from banortegpt.database.mongo_memory import crud
class ChunkType(StrEnum):
START = "start"
TEXT = "text"
REFERENCE = "reference"
IMAGE = "image"
TOOL = "tool"
END = "end"
ERROR = "error"
ContentType: TypeAlias = str | int
class ResponseChunk(BaseModel):
type: ChunkType
content: ContentType | list[ContentType] | None
@observe(capture_input=False, capture_output=False)
async def stream(agent: MayaBursatil, prompt: str, conversation_id: UUID):
yield ResponseChunk(type=ChunkType.START, content="")
conversation = await crud.get_conversation(conversation_id)
if conversation is None:
raise ValueError("Conversation not found")
conversation.add(role="user", content=prompt)
history = conversation.to_openai_format(agent.message_limit, langchain_compat=True)
async for content in agent.stream(history):
yield ResponseChunk(type=ChunkType.TEXT, content=content)
if (tool_id := ctx.tool_id.get()) is not None:
tool_buffer = ctx.tool_buffer.get()
assert tool_buffer is not None
tool_name = ctx.tool_name.get()
assert tool_name is not None
yield ResponseChunk(type=ChunkType.TOOL, content=None)
buffer_dict = json.loads(tool_buffer)
response, payloads = await agent.tool_map[tool_name](**buffer_dict)
conversation.add(
role="assistant",
tool_calls=[
{
"id": tool_id,
"function": {
"name": tool_name,
"arguments": tool_buffer,
},
"type": "function",
}
],
)
conversation.add(role="tool", content=response, tool_call_id=tool_id)
history = conversation.to_openai_format(agent.message_limit, langchain_compat=True)
async for content in agent.stream(history, {"tools": None}):
yield ResponseChunk(type=ChunkType.TEXT, content=content)
ref_urls, image_urls = await agent.get_shareable_urls(payloads) # type: ignore
if len(ref_urls) > 0:
yield ResponseChunk(type=ChunkType.REFERENCE, content=ref_urls)
if len(image_urls) > 0:
yield ResponseChunk(type=ChunkType.IMAGE, content=image_urls)
buffer = ctx.buffer.get()
conversation.add(role="assistant", content=buffer)
await conversation.replace()
yield ResponseChunk(type=ChunkType.END, content="")
langfuse_context.update_current_trace(
name=agent.__class__.__name__,
session_id=str(conversation_id),
input=prompt,
output=buffer,
)

64
apps/bursatil/gui/App.tsx Normal file
View File

@@ -0,0 +1,64 @@
import { Chat, ChatSidebar } from "@banorte/chat-ui";
import { messageStore } from "./store/messageStore";
import { conversationStore } from "./store/conversationStore";
import { httpRequest } from "./utils/request";
// Assets
import banorteLogo from "./assets/banortelogo.png";
import sidebarMaya from "./assets/sidebar_maya_contigo.png";
import brujulaElipse from "./assets/brujula_elipse.png";
import sendIcon from "./assets/chat_maya_boton_enviar.png";
import userAvatar from "./assets/chat_maya_default_avatar.png";
import botAvatar from "./assets/brujula.png";
function App() {
const { messages, pushMessage } = messageStore();
const {
conversationId,
setConversationId,
setAssistantName,
receivingMsg,
setReceivingMsg
} = conversationStore();
const handleStartConversation = async (user: string, assistant: string): Promise<string> => {
const response = await httpRequest("POST", "/v1/conversation", { user, assistant });
return response.conversation_id;
};
const handleFeedback = async (key: string, rating: string): Promise<void> => {
await httpRequest("POST", "/v1/feedback", { key, rating });
};
const assistant = "MayaBursatil";
return (
<div className="w-screen flex flex-col h-screen min-h-screen scrollbar-none">
<div className="w-full flex">
<ChatSidebar
assistant={assistant}
logoSrc={banorteLogo}
sidebarImageSrc={sidebarMaya}
assistantAvatarSrc={brujulaElipse}
/>
<Chat
assistant={assistant}
messages={messages}
pushMessage={pushMessage}
conversationId={conversationId}
setConversationId={setConversationId}
setAssistantName={setAssistantName}
receivingMsg={receivingMsg}
setReceivingMsg={setReceivingMsg}
onStartConversation={handleStartConversation}
sendIcon={sendIcon}
userAvatar={userAvatar}
botAvatar={botAvatar}
onFeedback={handleFeedback}
/>
</div>
</div>
);
}
export default App;

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

View File

@@ -0,0 +1,16 @@
@tailwind base;
@tailwind components;
@tailwind utilities;
.markdown a {
color: #0000FF;
text-decoration: underline;
}
.markdown a:hover {
color: #FF0000;
}
.markdown a:visited {
color: #800080;
}

View File

@@ -0,0 +1,5 @@
import ReactDOM from "react-dom/client";
import App from "./App.tsx";
import "./index.css";
ReactDOM.createRoot(document.getElementById("root")!).render(<App />);

View File

@@ -0,0 +1,19 @@
import { create } from "zustand";
interface conversationState {
assistantName: string;
conversationId: string;
receivingMsg: boolean;
setConversationId: (newId: string) => void;
setAssistantName: (newName: string) => void;
setReceivingMsg: (newState: boolean) => void;
}
export const conversationStore = create<conversationState>()((set) => ({
assistantName: "",
conversationId: "",
receivingMsg: false,
setConversationId: (newId) => set({ conversationId: newId }),
setAssistantName: (newName) => set({ assistantName: newName }),
setReceivingMsg: (newState) => set({ receivingMsg: newState }),
}));

View File

@@ -0,0 +1,14 @@
import { create } from "zustand";
interface messageState {
messages: Array<{ user: boolean; content: string }>;
pushMessage: (newMessage: { user: boolean; content: string }) => void;
resetConversation: () => void;
}
export const messageStore = create<messageState>()((set) => ({
messages: [],
pushMessage: (newMessage) =>
set((state) => ({ messages: [...state.messages, newMessage] })),
resetConversation: () => set(() => ({ messages: [] })),
}));

View File

@@ -0,0 +1,16 @@
export async function httpRequest(
method: string,
endpoint: string,
body: object | null,
) {
const url = "/api" + endpoint;
const data = {
method: method,
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(body),
credentials: "include" as RequestCredentials,
};
return await fetch(url, data).then((response) => response.json());
}

1
apps/bursatil/gui/vite-env.d.ts vendored Normal file
View File

@@ -0,0 +1 @@
/// <reference types="vite/client" />

13
apps/bursatil/index.html Normal file
View File

@@ -0,0 +1,13 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<link rel="icon" type="image/svg+xml" href="/vite.svg" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>MayaOCP</title>
</head>
<body>
<div id="root"></div>
<script type="module" src="/gui/main.tsx"></script>
</body>
</html>

View File

@@ -0,0 +1,40 @@
{
"name": "bursatil",
"private": true,
"version": "0.0.7",
"type": "module",
"scripts": {
"dev": "vite",
"build": "tsc && vite build",
"lint": "eslint . --ext ts,tsx --report-unused-disable-directives --max-warnings 0",
"preview": "vite preview"
},
"dependencies": {
"@banorte/chat-ui": "workspace:*",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"react-markdown": "^9.0.1",
"react-spring": "^9.7.4",
"rehype-raw": "^7.0.0",
"sse.js": "^2.5.0",
"zustand": "^4.5.2"
},
"devDependencies": {
"@iconify-icon/react": "^2.1.0",
"@types/react": "^18.2.67",
"@types/react-dom": "^18.2.22",
"@typescript-eslint/eslint-plugin": "^7.3.1",
"@typescript-eslint/parser": "^7.3.1",
"@vitejs/plugin-react": "^4.2.1",
"autoprefixer": "^10.4.19",
"daisyui": "^4.7.3",
"eslint": "^8.57.0",
"eslint-plugin-react-hooks": "^4.6.0",
"eslint-plugin-react-refresh": "^0.4.6",
"postcss": "^8.4.38",
"tailwind-scrollbar": "^3.1.0",
"tailwindcss": "^3.4.1",
"typescript": "^5.4.3",
"vite": "^5.2.3"
}
}

View File

@@ -0,0 +1,6 @@
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
},
}

View File

@@ -0,0 +1,26 @@
[project]
name = "bursatil"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.12, <4"
dependencies = [
"aiohttp>=3.11.16",
"azure-storage",
"fastapi[standard]>=0.115.6",
"hvac>=2.3.0",
"langchain-azure-ai[opentelemetry]>=0.1.4",
"langfuse>=2.60.2",
"mongo-memory",
"pydantic-settings>=2.8.1",
"qdrant",
]
[tool.uv.sources]
azure-storage = { workspace = true }
qdrant = { workspace = true }
mongo-memory = { workspace = true }
[tool.pyright]
venvPath = "../../"
venv = ".venv"

View File

@@ -0,0 +1,27 @@
/** @type {import('tailwindcss').Config} */
export default {
content: ["./index.html", "./gui/**/*.{js,ts,jsx,tsx}"],
theme: {
extend: {
backgroundImage: {
"navigation-pattern": "url('./assets/navigation.webp')",
},
},
},
plugins: [
require("daisyui"),
require("tailwind-scrollbar"),
require("@banorte/chat-ui/tailwind")
],
daisyui: {
themes: [
{
light: {
...require("daisyui/src/theming/themes")["light"],
primary: "red",
secondary: "teal",
},
},
],
},
};

View File

@@ -0,0 +1,25 @@
{
"compilerOptions": {
"target": "ES2020",
"useDefineForClassFields": true,
"lib": ["ES2020", "DOM", "DOM.Iterable", "ES2021.String"],
"module": "ESNext",
"skipLibCheck": true,
/* Bundler mode */
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"resolveJsonModule": true,
"isolatedModules": true,
"noEmit": true,
"jsx": "react-jsx",
/* Linting */
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true,
"noFallthroughCasesInSwitch": true
},
"include": ["gui"],
"references": [{ "path": "./tsconfig.node.json" }]
}

View File

@@ -0,0 +1,11 @@
{
"compilerOptions": {
"composite": true,
"skipLibCheck": true,
"module": "ESNext",
"moduleResolution": "bundler",
"allowSyntheticDefaultImports": true,
"strict": true
},
"include": ["vite.config.ts"]
}

View File

@@ -0,0 +1,16 @@
import { defineConfig } from "vite";
import react from "@vitejs/plugin-react";
// https://vitejs.dev/config/
export default defineConfig({
plugins: [react()],
server: {
host: "0.0.0.0",
port: 3000,
proxy: {
"/api": {
target: "http://localhost:8000",
},
},
},
});

View File

@@ -0,0 +1,18 @@
module.exports = {
root: true,
env: { browser: true, es2020: true },
extends: [
'eslint:recommended',
'plugin:@typescript-eslint/recommended',
'plugin:react-hooks/recommended',
],
ignorePatterns: ['dist', '.eslintrc.cjs'],
parser: '@typescript-eslint/parser',
plugins: ['react-refresh'],
rules: {
'react-refresh/only-export-components': [
'warn',
{ allowConstantExport: true },
],
},
}

View File

@@ -0,0 +1,6 @@
Eres MayaBursatil, una muy amigable y símpatica asistente virtual del departamento de contraloria bursatil de Banorte.
Tu objetivo es responder preguntas de usuarios de manera informativa y empatica.
Para cada pregunta, utiliza la herramienta 'get_information' para obtener informacion de nuestro FAQ.
Utiliza la informacion para responder la pregunta del usuario.
Utiliza emojis.
Si no puedes responder la pregunta basado en la informacion del FAQ, responde con el contenido en el FALLBACK.

View File

View File

@@ -0,0 +1,133 @@
import json
import logging
from typing import Any
from pathlib import Path
import aiosqlite
from langchain_azure_ai.chat_models import AzureAIChatCompletionsModel
from langchain_azure_ai.embeddings import AzureAIEmbeddingsModel
from langchain_core.messages.ai import AIMessageChunk
from langchain_qdrant import QdrantVectorStore
import api.context as ctx
from api.config import config
from api.prompts import ORCHESTRATOR_PROMPT, TOOL_SCHEMAS
logger = logging.getLogger(__name__)
AZURE_AI_URI = "https://eastus2.api.cognitive.microsoft.com"
SQLITE_DB_PATH = Path(__file__).parent / "db.sqlite"
class MayaInversionistas:
system_prompt = ORCHESTRATOR_PROMPT
generation_config = {
"temperature": config.model_temperature,
}
message_limit = config.message_limit
index = config.vector_index
limit = config.search_limit
bucket = config.storage_bucket
llm = AzureAIChatCompletionsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.model}",
credential=config.openai_api_key,
).bind_tools(TOOL_SCHEMAS)
embedder = AzureAIEmbeddingsModel(
endpoint=f"{AZURE_AI_URI}/openai/deployments/{config.embedding_model}",
credential=config.openai_api_key,
)
search = QdrantVectorStore.from_existing_collection(
embedding=embedder,
collection_name=index,
url=config.qdrant_url,
api_key=config.qdrant_api_key,
)
def __init__(self) -> None:
self.tool_map = {
"getGFNORTEData": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "gf_norte"),
"getBanorteConsolidadoData": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "banorte_consolidado"),
"getAlmacenadoraConsolidadoData": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "almacenadora_consolidado"),
"getArrendadoraFactorConsolidado": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "arrendadora_factor_consolidado"),
"getCasadeBolsaConsolidado": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "casa_bolsa_conosolidado"),
"getOperadoradeFondos": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "op_fondos"),
"getSectorBursatil": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "sector_bursatil"),
"getSectorBAPConsolidado": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "sector_bap_consolidado"),
"getSeguros": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "seguros"),
"getPensiones": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "pensiones"),
"getBineo": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "bineo"),
"getSectorBanca": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "sector_banca"),
"getHolding": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "holding"),
"getBanorteFinancialServices": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "banorte_financial_services"),
"getFideicomisoBursaGEM": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "fideicomiso_bursa_gem"),
"getTarjetasdelFuturo": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "tarjetas_del_futuro"),
"getAfore": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "afore"),
"getBanorteFuturo": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "banorte_futuro"),
"getSegurosSinBanorteFuturo": lambda year, quarter, concept: self.run_sqlite_tool(year, quarter, concept, "seguros_sin_banorte_futuro"),
"getInformationalData": self.run_qdrant_tool,
}
@staticmethod
def build_response(results: list[dict]) -> str:
return (
"I have retrieved the following results from the database:\n"
+ json.dumps(results)
+ "\nPara mayor información consultar el Reporte de Resultados Trimestral (URL: https://investors.banorte.com/es/financial-information/quarterly-reports)"
)
async def run_sqlite_tool(self, year: int, quarter: int, concept: str, table: str):
results = await self.get_data_from_sqlite(year, quarter, concept, table)
data = [dict(row) for row in results]
return self.build_response(data)
async def run_qdrant_tool(self, question: str):
logger.info(
f"Embedding question: {question} with model {self.embedder.model_name}"
)
results = self.search.similarity_search(question)
data = [dict(row.metadata) for row in results]
tool_response = self.build_response(data)
return tool_response
@staticmethod
async def get_data_from_sqlite(year: int, quarter: int, concept: str, table: str):
async with aiosqlite.connect(SQLITE_DB_PATH) as db:
query = """
SELECT * FROM {}
WHERE year = ? AND trim = ? AND concept = ?
""".format(table)
db.row_factory = aiosqlite.Row
cursor = await db.execute(query, (year, quarter, concept))
rows = await cursor.fetchall()
return rows
def _generation_config_overwrite(self, overwrites: dict | None) -> dict[str, Any]:
generation_config_copy = self.generation_config.copy()
if overwrites:
for k, v in overwrites.items():
generation_config_copy[k] = v
return generation_config_copy
async def stream(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
async for chunk in self.llm.astream(input=history, **generation_config):
assert isinstance(chunk, AIMessageChunk)
if call := chunk.tool_call_chunks:
if tool_id := call[0].get("id"):
ctx.tool_id.set(tool_id)
if name := call[0].get("name"):
ctx.tool_name.set(name)
if args := call[0].get("args"):
ctx.tool_buffer.set(ctx.tool_buffer.get() + args)
else:
if buffer := chunk.content:
assert isinstance(buffer, str)
ctx.buffer.set(ctx.buffer.get() + buffer)
yield buffer
async def generate(self, history, overwrites: dict | None = None):
generation_config = self._generation_config_overwrite(overwrites)
return await self.llm.ainvoke(input=history, **generation_config)

View File

@@ -0,0 +1,59 @@
from hvac import Client
from pydantic import Field
from pydantic_settings import BaseSettings
client = Client(url="https://vault.ia-innovacion.work")
if not client.is_authenticated():
raise Exception("Vault authentication failed")
secret_map = client.secrets.kv.v2.read_secret_version(
path="banortegpt", mount_point="secret"
)["data"]["data"]
class Settings(BaseSettings):
# Config
log_level: str = "warning"
service_name: str = "MayaOCP"
model: str = "gpt-4o"
model_temperature: int = 0
embedding_model: str = "text-embedding-3-large"
message_limit: int = 10
storage_bucket: str = "ocpreferences"
vector_index: str = "MayaOCP"
search_limit: int = 3
host: str = "0.0.0.0"
port: int = 8000
# API Keys
azure_endpoint: str = Field(default_factory=lambda: secret_map["azure_endpoint"])
openai_api_key: str = Field(default_factory=lambda: secret_map["openai_api_key"])
openai_api_version: str = Field(
default_factory=lambda: secret_map["openai_api_version"]
)
azure_blob_connection_string: str = Field(
default_factory=lambda: secret_map["azure_blob_connection_string"]
)
qdrant_url: str = Field(default_factory=lambda: secret_map["qdrant_api_url"])
qdrant_api_key: str | None = Field(
default_factory=lambda: secret_map["qdrant_api_key"]
)
mongodb_url: str = Field(
default_factory=lambda: secret_map["cosmosdb_connection_string"]
)
async def init_mongo_db(self):
from banortegpt.database.mongo_memory.models import Conversation
from beanie import init_beanie
from motor.motor_asyncio import AsyncIOMotorClient
client = AsyncIOMotorClient(self.mongodb_url)
await init_beanie(
database=client.banortegptdos,
document_models=[Conversation],
)
config = Settings() # type: ignore

View File

@@ -0,0 +1,6 @@
from contextvars import ContextVar
buffer: ContextVar[str] = ContextVar("buffer", default="")
tool_buffer: ContextVar[str] = ContextVar("tool_buffer", default="")
tool_id: ContextVar[str | None] = ContextVar("tool_id", default=None)
tool_name: ContextVar[str | None] = ContextVar("tool_name", default=None)

Binary file not shown.

View File

@@ -0,0 +1,9 @@
import json
from pathlib import Path
__all__ = ["ORCHESTRATOR_PROMPT", "TOOL_SCHEMAS"]
prompt_dir = Path(__file__).parent
ORCHESTRATOR_PROMPT = (prompt_dir / Path("orchestrator.md")).read_text()
TOOL_SCHEMAS = json.loads((prompt_dir / Path("tools.json")).read_text())

View File

@@ -0,0 +1,172 @@
Eres un asistente especializado en proporcionar información precisa y relevante exclusivamente sobre Grupo Financiero Banorte y las empresas asociadas a este grupo. Tu única fuente de información es la base de datos vectorial conectada y las funciones que puedes invocar.
Es fundamental que evites hacer suposiciones, especulaciones o conclusiones que no estén respaldadas por los datos proporcionados.
Debes responder siempre en el idioma (inglés o español) utilizado en la última consulta del usuario. Solo puedes basarte en la información recuperada de la base de datos vectorial o SQL. Si se accede a una fuente externa o falta algún dato relevante, debes incluir la URL correspondiente en tu respuesta,
Muy Importante responder en el idioma del usuario aun que la tool este en otro idioma.
Definiciones clave:
ROE (Rendimiento sobre el Capital Contable) y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
Rentabilidad Financiera
Rentabilidad sobre el Patrimonio
Rentabilidad sobre el Capital Propio
Retorno sobre el Patrimonio Neto
Retorno sobre el Capital Propio
Rendimiento del Capital Propio
Rendimiento de Capital
Return on Equity (ROE)
Equity Return
Shareholders' Return
Return on Net Worth
Return on Shareholders' Equity
Net Worth Return
ROA (Rendimiento sobre Activos) y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
Rentabilidad sobre Activos
Retorno sobre Activos
Rentabilidad de los Activos
Retorno de los Activos
Rendimiento de los Activos
Return on Assets (ROA)
Asset Return
Return on Total Assets
Asset Profitability
Return on Investment in Assets
roa
ROTE (Rendimiento sobre Capital Tangible) y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
Rentabilidad sobre el Patrimonio Tangible
Rentabilidad sobre el Capital Tangible
Retorno sobre el Patrimonio Tangible
Retorno sobre el Capital Tangible
Rendimiento del Patrimonio Tangible
Rendimiento del Capital Tangible
Return on Tangible Equity (ROTE)
Tangible Equity Return
Tangible Return on Equity
Tangible Net Worth Return
Return on Tangible Net Worth
rote
MIN (Margen de Interés Neto) y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
MIN
min
Margen Neto de Intereses
Margen de Intereses
Margen Financiero Neto
Margen Neto de Financiamiento
Margen Neto de Ingresos por Intereses
MIN Ajustado por Riesgos Crediticios y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
Margen Neto de Intereses Ajustado por Riesgos Crediticios
Margen de Intereses Ajustado por Riesgos Crediticios
Margen Financiero Neto Ajustado por Riesgos Crediticios
Margen Neto de Financiamiento Ajustado por Riesgos Crediticios
Margen Neto de Ingresos por Intereses Ajustado por Riesgos Crediticios
min ajustado
min_ajustado
Índice de Eficiencia y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
Ratio de Eficiencia
Coeficiente de Eficiencia
Índice de Productividad
Ratio de Productividad
indice de eficiencia
Costo de Riesgo y sus sinónimos, que deberán utilizarse según el contexto, incluyen:
Coste del Riesgo
Costo de Riesgo
Costo Total del Riesgo
Coste Total del Riesgo
Costo de Gestión de Riesgos
costo_riesgo
Índice de Morosidad:
Ratio de Morosidad
Tasa de Morosidad
Índice de Incumplimiento
Tasa de Incumplimiento
Índice de Cartera Vencida
indice de morosisdad
indice_morocidad
Índice de Cobertura:
Ratio de Cobertura
Coeficiente de Cobertura
Índice de Protección
ICOB
indice_covertura
Tasa de Impuestos:
Tasa Impositiva
Tipo Impositivo
Tasa Tributaria
Tipo de Gravamen
Tasa Fiscal
taza_impuestos
Eficiencia Operativa:
Eficiencia en Operaciones
Eficiencia de Operaciones
Eficiencia Operacional
Rendimiento Operativo
Productividad Operativa
eficiencia_op
Índice de Apalancamiento:
Ratio de Apalancamiento
Coeficiente de Apalancamiento
Índice de Endeudamiento
Ratio de Endeudamiento
Índice de Deuda
indice_ap
Liquidez:
Capacidad de Pago
Solvencia a Corto Plazo
Disponibilidad de Efectivo
Facilidad de Conversión a Efectivo
Fluidez Financiera
liqidez
Nomenclatura a considerar:
El primer trimestre de 2023 se puede referir de las siguientes maneras, dependiendo del contexto y del formato temporal utilizado:
1T23 o
1Q23
De manera similar, para el segundo trimestre de 2024, se utilizaría:
2T24 o
2Q24
Y así sucesivamente para los trimestres de años posteriores o pasados.
Empresas a tomar en cuenta:
1.- GFNorte Consolidado (GFNorte,GFNORTE): Para obtener datos financieros específicos de GFNorte, puedes utilizar la herramienta "getGFNORTEData".
2.- Banorte Consolidado (Banorte): Para obtener datos financieros específicos de GFNorte, puedes utilizar la herramienta "getBanorteConsolidadoData".
3.- Almacenadora Consolidado: Para obtener datos financieros específicos de Almacenadora Consolidado, puedes utilizar la herramienta "getAlmacenadoraConsolidadoData".
4.- Arrendadora y Factor Consolidado: Para obtener datos financieros específicos de Arrendadora y Factor Consolidado, puedes utilizar la herramienta "getArrendadoraFactorConsolidado".
5.- Casa de Bolsa Consolidado: Para obtener datos financieros específicos datos financieros específicos de Casa de Bolsa Consolidado, puedes utilizar la herramienta "getCasadeBolsaConsolidado".
6.- Operadora de Fondos: Para obtener datos financieros específicos de Operadora de Fondos , puedes utilizar la herramienta "getOperadoradeFondos".
7.- Sector Bursatil: Para obtener datos financieros específicos de Sector Bursatil , puedes utilizar la herramienta "getSectorBursatil".
8.- Sector BAP Consolidado: Para obtener datos financieros específicos de Sector BAP Consolidado , puedes utilizar la herramienta "getSectorBAPConsolidado".
9.- Seguros: Para obtener datos financieros específicos de Seguros, puedes utilizar la herramienta "getSeguros".
10.- Pensiones: Para obtener datos financieros específicos de Pensiones, puedes utilizar la herramienta "getPensiones".
11.- Bineo: Para obtener datos financieros específicos de Bineo, puedes utilizar la herramienta "getBineo".
13.- Sector Banca: Para obtener datos financieros específicos de Sector Banca, puedes utilizar la herramienta "getSectorBanca".
14.- Holding: Para obtener datos financieros específicos de Holding, puedes utilizar la herramienta "getHolding".
15.- Banorte Financial Services: Para obtener datos financieros específicos de Banorte Financial Services, puedes utilizar la herramienta "getBanorteFinancialServices".
16.- Fideicomiso Bursa GEM: Para obtener datos financieros específicos de Fideicomiso Bursa GEM, puedes utilizar la herramienta "getFideicomisoBursaGEM".
17.- Tarjetas del Futuro: Para obtener datos financieros específicos de Tarjetas del Futuro, puedes utilizar la herramienta "getTarjetasdelFuturo".
18.- Afore: Para obtener datos financieros específicos de Afore, puedes utilizar la herramienta "getAfore".
19.- Banorte Futuro: Para obtener datos financieros específicos de Banorte Futuro, puedes utilizar la herramienta "getBanorteFuturo".
20.- Seguros Sin Banorte Futuro: Para obtener datos financieros específicos de Seguros Sin Banorte Futuro, puedes utilizar la herramienta "getSegurosSinBanorteFuturo".
21.- Assist the user in finding resources, key concepts, and relevant keywords. This function searches for data and concepts—such as 'Banortes Dividend,' 'Banorte Financial Group Structure,' 'banking information in Mexico,' 'quarterly report location,' and more—within the vector database , puedes utilizar la herramienta : "getInformationalData"
Other tools :
Retrieve informational data to help the user Assist the user in finding resources, key concepts, and relevant keywords. This function searches for data and concepts—such as 'Banortes Dividend,' 'Banorte Financial Group Structure,' 'banking information in Mexico,' 'quarterly report location,' and more—within the vector database.
will return where the user can find the information, puedes utilizar la herramienta
: "getInformationalData"
Siempre que sea posible, utiliza una función o herramienta integrada para proporcionar respuestas basadas en la información disponible.
If a required field or detail is missing for a search, clearly notify the user and provide guidance on the missing information.

View File

@@ -0,0 +1,779 @@
[
{
"type": "function",
"function": {
"name": "getGFNORTEData",
"description": "Retrieve 'GFNORTE (GF NORTE)' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getBanorteConsolidadoData",
"description": "Retrieve 'Banorte Consolidado or Banorte' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getAlmacenadoraConsolidadoData",
"description": "Retrieve 'Almacenadora Consolidado' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getArrendadoraFactorConsolidado",
"description": "Retrieve Arrendadora y Factor Consolidado data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getCasadeBolsaConsolidado",
"description": "Retrieve 'Casa de Bolsa Consolidado' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getOperadoradeFondos",
"description": "Retrieve 'Operadora de Fondos' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getSectorBursatil",
"description": "Retrieve 'Sector Bursatil' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getSectorBAPConsolidado",
"description": "Retrieve 'Sector BAP Consolidado' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getSeguros",
"description": "Retrieve 'Seguros' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getPensiones",
"description": "Retrieve 'Pensiones' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getBineo",
"description": "Retrieve 'Bineo' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getSectorBanca",
"description": "Retrieve 'Sector Banca' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getHolding",
"description": "Retrieve 'Holding' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getBanorteFinancialServices",
"description": "Retrieve 'Banorte Financial Services' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getFideicomisoBursaGEM",
"description": "Retrieve 'Fideicomiso Bursa GEM' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getTarjetasdelFuturo",
"description": "Retrieve 'Tarjetas del Futuro' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getAfore",
"description": "Retrieve 'Afore' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getBanorteFuturo",
"description": "Retrieve 'Banorte Futuro' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getSegurosSinBanorteFuturo",
"description": "Retrieve 'get Seguros Sin Banorte Futuro' data for a specific financial concept, year, and quarter or trimester. The data is stored in a SQLite database. If one of the parameters is missing, let the user know.",
"parameters": {
"type": "object",
"properties": {
"concept": {
"type": "string",
"description": "The financial concept to retrieve data for. It must be either 'roe','roa','rote','min', 'min_ajustado', 'indice_eficiencia', 'costo_riesgo', 'indice_morocidad', 'indice_covertura', 'taza_impuestos', 'eficiencia_op', 'indice_ap', 'liqidez'. (The concept is case-insensitive, but must be one of these options)",
"enum": [
"roe",
"roa",
"rote",
"min",
"min_ajustado",
"indice_eficiencia",
"costo_riesgo",
"indice_morocidad",
"indice_covertura",
"taza_impuestos",
"eficiencia_op",
"indice_ap",
"liqidez"
]
},
"year": {
"type": "integer",
"description": "The year of the data"
},
"quarter": {
"type": "integer",
"description": "The quarter or trimester of the year (1-4)"
}
},
"required": ["year", "quarter"]
}
}
},
{
"type": "function",
"function": {
"name": "getInformationalData",
"description": "",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "Assist the user in finding resources, key concepts, and relevant keywords. This function searches for data and concepts—such as 'Banorte's Dividend,' 'Banorte Financial Group Structure,' 'banking information in Mexico,' 'quarterly report location,' and more—within the vector database."
}
},
"required": ["question"]
}
}
}
]

View File

@@ -0,0 +1,53 @@
import uuid
from contextlib import asynccontextmanager
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from . import services
from .config import config
from .agent import MayaInversionistas
@asynccontextmanager
async def lifespan(_: FastAPI):
await config.init_mongo_db()
yield
app = FastAPI(lifespan=lifespan)
agent = MayaInversionistas()
class Message(BaseModel):
conversation_id: uuid.UUID
prompt: str
@app.post("/api/v1/conversation")
async def create_conversation():
conversation_id = uuid.uuid4()
await services.create_conversation(conversation_id)
return {"conversation_id": conversation_id}
@app.post("/api/v1/message")
async def send(message: Message, stream: bool = False):
if stream is True:
def b64_sse(func):
async def wrapper(*args, **kwargs):
async for chunk in func(*args, **kwargs):
content = chunk.model_dump_json()
data = f"data: {content}\n\n"
yield data
return wrapper
sse_stream = b64_sse(services.stream)
generator = sse_stream(agent, message.prompt, message.conversation_id)
return StreamingResponse(generator, media_type="text/event-stream")
else:
response = await services.generate(agent, message.prompt, message.conversation_id)
return response

View File

@@ -0,0 +1,9 @@
from .create_conversation import create_conversation
from .generate_response import generate
from .stream_response import stream
__all__ = [
"create_conversation",
"stream",
"generate",
]

View File

@@ -0,0 +1,9 @@
from uuid import UUID
from banortegpt.database.mongo_memory import crud
from api.prompts import ORCHESTRATOR_PROMPT
async def create_conversation(user_id: UUID) -> None:
await crud.create_conversation(user_id, ORCHESTRATOR_PROMPT)

Some files were not shown because too many files have changed in this diff Show More